
FAST: A Fast Stencil Autotuning Framework Based on an
Optimal-solution Space Model

Yulong Luo†, Guangming Tan†, Zeyao Mo‡, Ninghui Sun†
†State Key Laboratory of Computer Architecture,kInstitute of Computing Technology

‡Institute of Applied Physics and Computational Mathematics
Beijing, China

{luoyulong,tgm,snh}@ncic.ac.cn, zeyao_ mo@iapcm.ac.cn

ABSTRACT
Stencil computations comprise an important class of kernels
in many scientific computing applications. As the diver-
sity of both architectures and programming models grow,
autotuning is emerging as a critical strategy for achieving
portable performance across a broad range of execution con-
texts for stencil computations. However, costly tuning over-
head is a major obstacle to its popularity. In this work, we
propose a fast stencil autotuning framework FAST based
on an Optimal-Solution Space (OSS) model to significantly
improve tuning speed. It leverages a feature extractor that
comprehensively characterizes stencil computation. Using
the extracted features, FAST constructs an OSS database
to train an off-line model which provides an on-line predic-
tion. We evaluate FAST with five important stencil com-
putation applications on both an Intel Xeon multicore CPU
and an NVIDIA Tesla K20c GPU. Compared with state-
of-the-art stencil autotuners like Patus and SDSL, FAST
improves autotuning speed by 10− 2697 times without any
user annotation, while achieving comparable performance.

Categories and Subject Descriptors
D.1.3 [Programming techniques]: Concurrent program-
ming—Parallel Programming ; D.3.4 [Programming Lan-
guages]: Processors—Code Generation, Compilers

General Terms
Algorithms, Performance, Languages

Keywords
Stencil; Autotuning; OSS

1. INTRODUCTION
Stencil computations are of critical importance for sci-

entific computing, engineering, image processing, particle

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICS’15, June 8–11, 2015, Newport Beach, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3559-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2751205.2751214.

Table 1: The reported autotuning speed in existing stencil
autotuning systems.

Autotuner Search Time Search Strategy
PATUS [35] 8 hours Greedy
SDSL [20] >33 hours Exhaustive
Halide [41] 2 hours - 2 days Stochastic

PARTANS [31] 2.5 hours - 32 days Hill climbing

simulation, and geometric modeling. For example, grand
challenge applications including climate, weather, and ocean
modeling use explicit time-integration methods of partial
differential equations that require Exascale stencil compu-
tations. Other important examples include computational
electromagnetics and quantum dynamics codes using the
finite-difference time-domain (FDTD) method, medical and
image-processing applications that perform smoothing and
other neighbor pixel-based computations, and certain cellu-
lar automata and seismic simulations. Due to the impor-
tance of stencil computations, it has resulted in extensive
programming model research efforts, as well as architectural
support.

The advent of multi/many-core processors brings more
complexity and diversity in architectures and programming
models. As a consequence, it increases the difficulty of devel-
oping high performance programs with reasonable efficiency.
Recently, a critical technology to deal with the significant
changes is autotuning [4] that acts as either an auto-tuning
library [51, 50] or adaptive performance tuning framework
[12, 35, 7] for some specific domain. In general, autotuning
explores a search space of possible optimization solutions,
which reflect functional equivalence but employ different al-
gorithms or implementations, and optimization parameters.
A core problem addressed by recent technical approaches is
to tune optimization strategies considering program and ex-
ecution context together. The term running instance is
used within autotuning to refer to the combination of pro-
gram code, input, target platform, and back-end compiler.
It encapsulates the program code and execution context as
a whole, and directly determines actual performance of an
application.

Two major approaches to autotuning are empirical search-
based and prediction-based. Search-based autotuning is a
universal but time consuming approach which measures the
runtime of all the candidate optimization solutions. For
most stencil autotuners, the search-based approach is em-
ployed to select a suitable optimization solution from a huge
optimization space. A number of pruning strategies and
search heuristics are adopted to reduce optimization space
and speed up the tuning process[43, 35, 12, 31, 27, 10, 11, 40,

187



8, 52, 36]. In addition, analytical models derived by com-
posing analysis of code with architectural models are also
used to reduce an optimization space to more profitable so-
lutions. However, for some complicated tuning problems,
these techniques may still result in unacceptable overhead.
Table 1 surveys the autotuning search time reported by ex-
isting stencil autotuning systems. In contrast to search-
based approaches, prediction-based autotuning gives suit-
able optimization solutions directly and shows very low over-
head, relatively. This approach relies on building a machine
learning model that maps from a feature space to an optimal
solution space and is usually applied to algorithm selection.
However, for stencil autotuning, there are three challenges
preventing prediction-based techniques from being applied:
i) the optimal optimization solutions are affected by the in-
put data, platform, and stencil itself, and vary a lot when
these features are changing. ii) the number of optimization
solutions is extremely large, and a prohibitive amount of
training data is required. iii) the performance gap between
the optimal and a near-optimal solution is not always dis-
tinct, resulting in low accuracy of the model.

x

x
x x x x x x x x x x x x x

0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

The number of optimal solutions

M
is

s 
ra

tio

Figure 1: The miss radio of this machine learning model is
related to the number of predicted optimal solutions.

In this paper, we propose a Framework based on optimAl-
solution Space modeling for sTencil autotuning (FAST), in-
tegrating techniques of static analysis, domain-specific lan-
guages, and machine learning methods to overcome these
challenges above. First, FAST adopts static analysis and
domain-specific techniques to extract inherent features from
target running instances to assist autotuning. Second, a self-
learning database is set up to collect training data during
either training or tuning phases, lowering the requirement
for initial training data. Furthermore, Figure 1 presents the
average miss ratio of a machine learning model that predicts
a set of optimal solutions, where a smaller miss ratio means
higher accuracy. When the number of predicted optimal so-
lutions equals 1, it indicates an approach directly predicting
the best solution, and the miss ratio is about 50%. When
the number of predicted optimal solutions grows, the miss
ratio decreases until the number is 25, where a minimum
point is reached. Instead of predicting the best solution di-
rectly, it is more feasible to predict a set of optimal solutions
(or near-optimal). According to this observation, FAST uses
a prediction-based approach to generate highly-tuned solu-
tions by predicting a set of optimal solutions (refer to as an
optimal-solution space), thereby it significantly improves
the tuning speed.

More specifically, we make the following contributions:

• We develop a feature extractor that extracts inherent
features of a running instance, including aspects of al-
gorithm, architecture and input, to characterize sten-
cil computation. Afterwards, an embedded domain-
specific language for stencil is proposed to facilitate

feature extraction, which is implemented using the ROSE
compiler infrastructure (Section 4).

• We formulate a machine learning model to correlate
features with an optimal-solution space. The core of
this model is that the OSSs of two running instances
are similar if their features are of high similarity (Sec-
tion 5).

• We set up a self-learning database to train the model
and generate OSSs. It automatically records optimiza-
tion recipes and constructs OSSs during either training
or tuning phases (Section 5).

• We implement a code generator that supports C/For-
tran/CUDA back-end code generation and optimiza-
tion. It performs code translation and transformation
according to the back-end compiler and selected opti-
mization solution (Section 6).

Compared with state-of-the-art stencil autotuning systems
like Patus and SDSL, FAST accomplishes the autotuning
process in minutes and the tuning step is reduced by 10 −
2697 times without any user annotations while achieving
comparable performance.

2. MOTIVATION
A stencil is a geometric structure and defines the value

of a grid point v(R) in a d-dimensional spatial grid R at
time t as a function of neighboring grid points at recent
times before t. A stencil computation sweeps over R to up-
date v(R) as a mapping function f of its neighbors v(R′),
where R′ ∈ neighbor(R). It computes the stencil repeat-
edly for each grid point over many time steps. Stencil or-
der H is defined as the distance between the central grid
point R and the farthest grid points R′ in neighbor(R) along
a certain axis. Stencil size N is defined as the cardinal-
ity |neighbor(R)|, that is the number of grid points R′ in
neighbor(R) including R itself. The definition of a stencil
computation doesn’t specify how the map function f exactly
performs, its concrete implementation depends on a physi-
cal model in practice. Therefore, it is impossible to define
a common library like BLAS routines for stencil computa-
tion. In other words, optimization solutions applied to sten-
cil computations are either input-sensitive or application-
specific.

The design principle of our autotuning framework is mo-
tived by observations on the relationship between algorithm
features and optimization solutions. Figure 2 demonstrates
an example of four stencil computation kernels in two groups.
Intuitively, it is obvious that the difference between kernel1
and kernel2 in GroupA is less than that between kernel3
and kernel4 in GroupB. In fact, we can characterize their
algorithm features using some quantitative metrics. As an
illustrative instance, we simply use several metrics includ-
ing array number(AN), flop density(FD), and reference den-
sity(RD), to characterize the four kernels. For this example,
it is easy to calculate these metrics by hand. The values are
summarized in the tables of Figure 2. The differences of all
metrics in GroupA are extremely low while the difference
in GroupB are much higher. A straightforward conclusion
from the feature difference is that there is a high probability
of applying the same optimization solutions to all kernels
in GroupA, but different optimization solutions should be
applied to each kernel in GroupB.

188



//kernel1: 2 array, 6 flops, and 28 bytes data reference

//kernel2: 2 array, 8 flops, and 32 bytes data reference

//kernel3: 4 array, 14 flops, and 116 bytes data reference

//kernel4: 2 array, 28 flops, and 60 bytes data reference

{
Group B

{
ai, j,k=αbi, j,k−1+βbi, j,k+1+bi, j−1,k+bi, j+1,k+bi−1, j,k

+bi+1, j,k

a1
i, j,k=αb1

i, j,k−1+b1i, j,k+1+b1
i, j−1,k+b1

i, j+1,k+b1
i−1, j,k+b1

i+1, j,k+

a2
i, j,k=αb2

i, j,k−1+b2
i, j,k+1+b2

i, j−1,k+b2
i, j+1,k+b2

i−1, j,k+b2
i+1, j,k+b2

i, j,k

ai, j,k=αbi, j,k−1+bi, j,k+1+bi, j−1,k+bi, j+1,k+bi−1, j,k+bi+1, j,k

+bi, j,k

ai, j,k=αbi−1, j−1,k−1+bi, j−1,k−1+bi+1, j−1,k−1+bi−1, j,k−1+bi, j,k−1+
bi+1, j,k−1+bi−1, j+1,k−1+bi, j+1,k−1+bi+1, j+1,k−1+bi−1, j−1,k+

bi+1, j−1,k+bi−1, j,k+bi, j,k+bi+1, j,k+bi−1, j+1,k+
bi, j+1,k+bi+1, j+1,k+ bi−1, j−1,k+1+bi, j−1,k+1+bi+1, j−1,k+1+
bi−1, j,k+1+bi, j,k+1+bi+1, j,k+1+bi−1, j+1,k+1+bi, j+1,k+1+bi+1, j+1,k+1

Group A

bi, j,k

bi, j−1,k+

feature
kernel1
kernel2

AN
2
2

FD

8

RD
28
32

diff 0 2  4

6

kernel3
kernel4

4
2 28

116
60

diff 2 14 56

14

Figure 2: An example of four stencil computation kernels
and several typical computing features. AN: the number of
arrays. FD: the number of floating-point operations per sten-
cil point. RD: the number of data references per stencil point.

kernel1 kernel2 kernel3
tiling unrolling simd ...

127,15,64... 1 Y ....
127,15,24... 1 Y ....
127,15,32... 1 Y ....
127,15,18... 1 Y ....
127,15,19... 1 Y ....

127,64,14... 1 Y

......

...
....
....
....

....

kernel4

Group A Group B

....

...
....
....
....
....
....

.... ........ 0 20 40 60 80 100

20
%

40
%

60
%

80
%

10
0%

optimization solutions (th)

Pe
rc

en
ta

ge
 o

f b
es

t p
er

fo
rm

an
ce optimize kernel1 using 

 best 100 solutions of kernel2 

optimize kernel3 using 
 best 100 solutions of kernel4 

Figure 3: An illustration of the relationship between opti-
mization solution and similarity of computing feature for the
two groups of stencil kernels.

In our experiments, we first construct the best 100 opti-
mization solutions for kernel2 and kernel4 by brute-force
search, then apply these optimization solutions to kernel1
and kernel3, respectively. For this motivating example we
adopt three optimization strategies— tiling, unrolling, and
SIMD to search optimal solutions (the table in the left of
Figure 3). The right picture in Figure 3 plots performance
normalized to the best solution 1 for kernel1 and kernel3.
For GroupA, kernel1 reaches more than 90% of its best
performance when using the same optimization solutions
as kernel2. For GroupB, kernel3 reaches only 60% of its
best performance when using the same optimization with
kernel4. The experimental result indicates a key attribute
where two stencil computations share the same (near-)optimal
solutions if they have high similarity in computing features.
Further, an autotuning system can leverage this attribute
to quickly find optimal solutions based on a priori knowl-
edge instead of a time-consuming empirical search-based ap-
proach.

3. AUTOTUNING FRAMEWORK
Figure 4 highlights the major constituent parts of FAST,

including (1) a feature extractor that characterizes inherent
features of an incoming running instance with the support
of a domain specific language, (2) an OSS module used to
find optimal solutions that is comprised of a model and a
database, (3) a code generator applying translation and op-

1It’s achieved by brute-force search.

Model for Optimal-solution Space

AlgorithmInput Architecture

Features

Solt1

Optimal-solution Space
.............Solt2 Soltk

Compiler
 Autotuning With 
Machine Learning

Algorithm

Running 
Instance Features 

 Extract

Optimized 
    Code    Code 

Generation

UnrollingTiling SIMD

Optimization
.............

Figure 4: Overview of FAST. It takes in a program source
written in domain-specific language, input data and archi-
tecture description, outputs an optimized program binary
for target architecture.

timization according to the back-end compiler and selected
optimization solution. We give a brief introduction to each
component by going through the autotuning process.

At the first step, the feature extractor performs an analy-
sis on an incoming running instance comprised of input data,
program code and architectural description. In order to
comprehensively characterize a running instance, we develop
an embedded domain-specific language (eDSL) for stencil
computations. The extracted features are then formed as a
feature vector.

With the extracted feature vector, the next step is to ob-
tain the optimal solution. FAST first sets up a self-learning
database that saves optimization recipes and forms an OSS.
Then it builds a model that correlates the behavior of a
new running instance with previous knowledge. The model
takes the difference of the feature vector from the new run-
ning instance and each saved feature vector as the input and
predicts the similarity of their OSSs. With the model, an
OSS that has maximum similarity with that of the incom-
ing case is picked out from the OSS database. According
to a preset threshold, the chosen OSS is validated through
an empirical approach, and the first optimization solution
satisfying the threshold is returned as the result.

Finally, the code generator performs source-to-source trans-
lation according to the detected programming model and the
resulting optimization solution. This step is comprised of
two phases. In the first phase, a naive implementation with-
out optimization is generated in the form of a high-level lan-
guage (C or CUDA) according to the back-end compiler. In
the second phase, optimization strategies are applied to the
naive implementation based on the resulting optimization
solution, and binary code is generated for a given execution
context.

4. FEATURE ANALYSIS

4.1 Features
The feature extractor focuses on three feature types— ar-

chitecture, algorithm and input. Table 2 summarizes these
features. The architecture features include several basic con-
figurations like processor core (e.g., frequency and vector
length.) and memory hierarchy (e.g., cache/shared memory,
bandwidth). The programming model is also considered as
an architecture feature, where tuning is a combination of
compiler options in a back-end compiler [13, 35, 3]. Al-
though the target of our autotuing system is stencil compu-
tations, the algorithm feature is independent of stencils and

189



Table 2: Features extracted by FAST.
Feature Name Optimization solution

Architecture
Cores number parallelism
Frequency computing upper bound
L1/L2/L3 cache size blocking
Shared memory (CUDA) blocking & parallelism
Global memory data layout
Register number unrolling & parallelism
Memory bandwidth blocking
Memory access latency parallelism
Programing model compiler options

Algorithm

Operational intensity parallelism
Flop density instruction pipeline
Reference density unrolling & blocking & texture (CUDA)
Array number blocking & data layout
Loop radius blocking & data reuse
Active cache lines data reuse
Data type data alignment & blocking

Input
Problem size all
Problem shape loop transformation
Step/iteration time tradeoff optimization overhead

can be used to characterize any program or problem. These
algorithm features mixed with the architecture and input
features are used to explore optimization solutions listed in
Table 4. For example, the loop radius together with cache
parameters is related to cache blocking. The input features
are specific to stencil computations. These feature types in-
clude problem size, shape and iterations. To some extent,
the problem size is related to all optimization solutions.

4.2 Compiler Support
In order to facilitate feature extraction, we design and im-

plement a stencil embedded domain-specific language (eDSL)
that is similar to other stencil DSLs [35, 20, 43, 34]. It is
a minimal extension of the C/C++/Fortran high-level lan-
guage, which expresses stencil domain information, such as
the grid array referenced in sweeping, and the domain area
that determines the range of sweeping. The extension struc-
tures are listed in Table 3, and we give a example of 3D
7-point in Figure 5.

1 void 7P_stencil(float∗∗∗ a,float∗∗∗ b,float alpha,float beta,int t)
2 { RegisterGridData (a,N,N,N);
3 RegisterGridData (b,N,N,N);
4 RegisterDomain ("dom",1,N−1,1,N−1,1,N−1);
5 STENCIL("dom",t)
6 b[0][0][0]=(a[0][0][−1]+a[0][0][1]+a[0][−1][0]+a[0][1][0]+
7 a[−1][0][0]+a[1][0[0])∗beta+a[0][0][0]∗alpha;
8 }

Figure 5: An example of 3D 7-point stencil.

During feature extraction, the DSL code is first translated
to an AST (Abstraction Syntax Tree) through front-end
compiling. The functions RegisterGridData() and Register-
Domain() in the AST are identified to construct internal ob-
jects of GridData and Domain. Each internal object is in-
serted into a global table to finish ”registration”. The struc-
ture STENCIL(domain,T) is transformed to a stencil ob-
ject using the previous global table, which represents a sten-
cil computation. Then, a feature analysis pass is performed
on stencil and outputs formatted feature data.

Table 3: The eDSL extends C/C++/Fortran with two data
types, two intrinsic functions and one special structure to
facilitate stencil representation and feature extraction.

Specification Description

GridData

It wraps the array address, dimension and di-
mensionality into a stencil data object, and
enables the compiler to do array index over-
flow checks and code generation on multiple
platforms.

Domain

It expresses a grid area that the stencil com-
putation is sweeping on and wraps N pairs of
boundary arguments that specify the upper
boundary and the lower boundary for each
dimension of the grid area.

RegisterGridData
(source,n1...)

It registers an array as a GridData object to
be identified in the STENCIL body. The func-
tion has N +1 arguments, where the first one
determines the data source of GridData, and
the next N arguments describe the shape of
the n-dimensional grid.

RegisterDomain
(id,l1,u1...)

It registers a grid area as a Domain object
with a unique id that identifies the Domain
object and 2 ∗ N arguments to describe the
shape of the sweeping domain for their upper
boundaries and lower boundaries.

STENCIL
(domain,T)
{..}

It is composed of three parts: (i) a unique
Domain; (ii) a integer variable T representing
the number of repeated stencil computations;
(iii) the shape of the stencil defining the ac-
tual computations. A language restriction is
that every referenced point is an element of
one registered GridData. The array indices
represent offsets away from the central point
of the stencil.

5. OPTIMAL-SOLUTION SPACE MODULE

5.1 Optimal-Solution Space
Formally, given an optimization space R = {v1, v2, ..., vN}

of N optimization solutions vi (i = 1..N), let M(vi) be a
metric to evaluate an optimization solution vi. An optimal-
solution space containing K solutions can be expressed as:

OSSK = {v|M(v) ≥M(v∗K), v, v∗K ∈ R} (1)

where v∗K is the K-th best optimization solution in R and
each v in OSSK is not worse than v∗k. In other words,
OSSK is a subset containing the best K optimization so-
lutions. Further, we define a notion of Overlapping Ratio
OR to measure the similarity of two OSSKs:

OR =
|OSSK

x ∩OSSK
y |

K
(2)

It represents the ratio of the similar part between two OSSs.
Our aim is to build a module that provides a mechanism

leveraging feature vector ~f =<architecture, algorithm, input>
to generate an OSS. We approach this problem by learning
mapping (Section 5.2) from the feature vector difference of

two running instance, ~x = ∆~f , to a probability distribution
over OR of their OSS, y = OR. Once this distribution has
been trained, to predict the OSS for a new running instance
is achieved by traversing a OSS database (Section 5.3) and
returning an OSS with a maximum predicted overlap ratio
OR∗,

OR∗ = argmax
x

q(y|~x)

To provide a design principle to this machine learning model,
we use a set of analytical experiments to study three key
attributes of the OSS, including:

Overlapping ratio: We conduct experiments on 288 run-

190



ning instances (details in Section7.1) on both CPU and GPU
platforms and achieve their OSSs by evaluating and rank-
ing the optimization solutions listed in Table 4. Figure 6
presents the average ORs of these OSSs, and the x-axis
presents their sizes (K). On both platforms, the average
ORs drop when K decreases. For the CPU instance, when
the size is 2100, the average OR is 78%. When the size
becomes 100, the average OR drops to 20%. The GPU plat-
form is the same. This result indicates a straightforward ob-
servation that larger OSSs have higher OR they share more
optimal (near-optimal) solutions with each other. However,
this leads to a dilemma that a larger OSS requires higher
overhead for its empirical validation.

0
20

40
60

80
15

00

13
00

11
00

90
0

70
0

50
0

30
0

10
0A

ve
ra

ge
 O

R
 (%

)
0

20
40

60
80

21
00

19
00

17
00

15
00

13
00

11
00

90
0

70
0

50
0

30
0

10
0

Size of optimal-solution space

CPU GPU

Figure 6: Relationship between OR and the size of OSSs.

Performance coverage: In an OSSK , the performance
lower bound is determined by the K-th best optimization
solution pK ,

plower(OSSK) = pK

To study the performance coverage of OSSs, we construct
the OSSs with different sizes (K) for 288 running instances
and evaluate their average performance lower bound DK by
computing,

DK =

∑N
m=1

pmK
p∗m

N

For a running instance m, p∗m is its best optimization solu-
tion, and pmK is its K-th best optimization solution. We
normalize the pmk value to p∗m, and calculate the average
value. As Figure 7 shows, DK slowly degrades when K
grows. More specifically, the DK decreases 10% in perfor-
mance compared to the best optimization solutions on the
CPU when K is 100. On the GPU, a 10% performance slow-
down occurs when K is 20. This observation indicates that
a small OSS covers most of the solutions with the highest
performance.

0 500 1000 1500 2000 2500

50
%

70
%

90
%

Size of optimal-solution space (K)

100
0 100 200 300 400 500 600 700

60
%

70
%

90
%

20

CPU GPU
Performance lower bound (Dk) Performance lower bound (Dk)

Figure 7: Performance lower bound of OSSs with different
size.

Sensitivity to features: For two running instances with
different features, their OSSs are different. To evaluate sen-
sitivity of OSS to feature difference, we conduct two exper-
iments by varying features of flop density and problem size,
respectively. In each experiment, one feature is fixed and

the other one varies. We measure the variability of features
in each group by computing their coefficient of variation:

cv =
σ

µ
=

√
1
N

∑N
i=1(xi − x)2

x

cv is a normalized measure of the dispersion of a probabil-
ity distribution. It is defined as the ratio of the standard
deviation σ to the mean µ. Figure 8 presents the average
OR for four groups of kernels with cv from 80% to 3%. The
result shows that when the coefficient of variation is smaller,
the OR between two OSSs is higher. This observation in-
dicates that the OSSs of two running instances have a high
OR if their features are of high similarity. Therefore, it is
reasonable that we can achieve an OSS having high OR
with incoming running instances using a recorded running
instance that has similar features.

76% 31% 14% 3%

CPU GPU

Coefficient of variation
A

ve
ra

ge
 O

R
 (%

)
0

20
40

60
80

10
0

82% 61% 15% 3%

CPU GPU

0
20

40
60

80
10

0

flop density problem size

Figure 8: Averaged OR of OSS100s for the four groups of
example kernels. Stencils in each group have different fea-
tures of flop density(left) and problem size(right) , and use
cv to denote extent of variability.

5.2 Build a Model
Based on the previous observations, we construct an optimal-

space model inputting feature vector difference of two run-

ning instances, ~x = ∆~f , and predicting a probability distri-
bution over OR of their OSS, y = OR. We let the feature
vector difference ~x be the result of subtracting two given
feature vectors,

xi =

{
fi − f ′i numeric

0/1 non− numeric

where xi is vector components of ~x. For the numeric feature
fi, we perform a subtraction on them. For non-numeric fi,
xi is 1 if the two features are the same. Otherwise xi is 0.
For each vector component xi, the difference of two running
instances in the i-th feature is a predictor variable and the
OR is a response variable. To fit a machine learning model,
we make use of the training records stored in a relational
database to generate a training set < X ,Y > where each
vector ~x ∈ X is a feature vector difference (x1, x2.., xD) and
each target y ∈ Y denotes the OR of the OSS of two running
instances. Because there is more than one predictor variable
in our model, we have used multiple linear regression and
assumed the form of the model as:

y =

D∑
i=1

F(xi)

D is the dimensionality of the feature vector difference, and
it equals to number of features. For each vector component
xi, the F(xi) denotes the effect of the feature difference xi on
OR. Considering the nonlinear relationship between feature

191



vector differences and OR, we employ a polynomial regres-
sion and represent each F(xi) as a three-order regression
function:

F(xi) = αi∆xi + βi∆x
2
i + γi∆x

3
i + δi

The αi, βi, γi are partial regression coefficients of xi, and δi
is its intercept.

y =

D∑
i=1

(αi∆xi + βi∆x
2
i + γi∆x

3
i + δi)

It is easy to build the model with a solver in the R language,
assuming that α̂, β̂, γ̂ are estimations for the parameters,
and εi = y′ − y are residuals between estimations and real
values. We can get α̂, β̂, γ̂ by minimizing residuals for each
εi.

5.3 OSS Database

flop

.......

Features table

....

OSS table

.......

optimization performance

optimization solution
input algorithm architecture

features

....

ref ....
....

....

8

14

40

56

tiling unrolling ...........
...........
...........

2

13,16,16...

3,16,16...

tiling unrolling ...........
...........
...........

2

13,16,16...

3,16,16...

Optimal-solution
Space Database
     

    Model For
 Optimal-solution
         Space

OSS

update

features

OSS

Figure 9: The database is used for the training model and
for generating OSSs. It is indexed by the feature vector, and
returns the corresponding OSS.

Figure 9 illustrates the structure of the OSS database and
its workflow. It is indexed by the feature vector, and returns
the corresponding OSS if it exists. The feature vectors and
OSS are stored in two tables, and are connected by a foreign
key, i.e., feature.id equals to optimalspace.featureid.

During the training phase, the OSS database stores and
updates the OSS for each training instance. Once a training
running instance finishes executing, an Update function is
invoked to update its running record in the database. For
each running record, there is one feature vector that is ex-
tracted by the feature analysis module, and one solution vec-
tor containing optimization parameters as well as the cor-
responding performance results collected by TAU [32]. If
either one of the two tables has no matched record, Update
adds the corresponding feature vector or solution vector.
Otherwise, the new training record is updated in the OSS
database.

5.4 Generate And Validate OSS
During the autotuning phase, the module is responsible

for inputting the feature vector of the incoming case and re-
turning its OSS. For an incoming test case, its feature vec-
tor is compared with that of running instances in the OSS
database. The module calculates their differences and uses
the OSS model to predict the OR of their OSSs. Then, the
OSS with maximum OR is returned as the result. The result
contains near-optimal solutions and we validate these solu-
tions using an empirical approach. In addition, we provide
an option to set a performance threshold, and validation is

stopped when reaching the threshold. Considering the ratio-
nale of this model, the optimization solutions of high qual-
ity accomplish the empirical validation rapidly and make
the whole autotuning overhead much lower than with other
strategies.

If the performance threshold is not satisfying after finish-
ing validation, a traditional search-based approach will be
performed as a backup. One thing to note is that the tradi-
tional autotuning procedure also updates the OSS database
with its running record. As a consequence, the iteration may
generate a self-learning database that trains a more powerful
model.

6. CODE GENERATION
Table 4: The parameterized optimization space.

Optimization
Parameter Range

Technology Description

Cache Blocking

blocking for
Level 1

L1i {1,2..N}
L1j {1,2..N}
L1k {1,2..N}

blocking for
Level 2

L2i {1,2..N}
L2j {1,2..N}
L2k {1,2..N}

blocking for
Level 3

L3i {1,2..N}
L3j {1,2..N}
L3k {1,2..N}

CUDA Blocking

blocking for
CUDA threads

tx {1,2..N}
ty {1,2..N}
tz {1,2..N}

blocking for
CUDA blocks

bx {1,2..N}
by {1,2..N}
bz {1,2..N}

OpenMP
thread-level
parallelism

number {1,2..16}

Unrolling
unrolling sten-
cil loop

factor {1,2..8}

SIMDization
data-level par-
allelism

dosimd {0,1}

Compiler
flag for icc or
nvcc

cflag
{O0,O1,O2,-
O3,-xSSE3,-

xAVX...}

According to the detected programming model or com-
piler back-end, the eDSL codes are translated to the corre-
sponding high level language. For each STENCIL structure,
the translator first acquires domain information and com-
putation times through Domain and T, and creates a loop
body for the stencil computation. Second, GridData vari-
ables are replaced by memory objects corresponding to an
array and its iterator variables in the memory of a particu-
lar programming model. The generated code is a naive code
solution and needs to be optimized. We apply optimization
strategies based on previous autotuning results. Some of our
optimization strategies are summarized in Table 4. Finally,
a highly-tuned code solution is generated and the autotuing
process finishes.

7. EVALUATION

7.1 Experimental Setup
We conduct the experiments on a 16-core SMP system

integrating two Intel Xeon E5-2670 multicore CPUs (116.4
GFlops double-precision and 332.8 GFlops single-precision)
and a NVIDIA Tesla K20c GPU (1.17 TFlops double-precision
and 3.52 TFlops single-precision). The back-end compiler is
an Intel compiler version 13.1 and an NVCC version 6.0,
respectively.

192



Test Dataset: We evaluate FAST with a benchmark set
composed of five stencil computation applications. FDTD [29]
represents a 3D 5-point stencil with order-1, which is used in
modeling computational electrodynamics. HEAT [20] repre-
sents a 3D 7-point stencil with order-1 which is used in chem-
ical diffusion, WAVE [37] represents 3D 25-points stencil
with order-4 which is used in fluid dynamics, POISSON [48]
represents 3D 19-points stencil with order-1 that used in me-
chanical engineering. HIMENO [21] represents 3D 19-points
with order-1.

Initializing Database: We initialize the OSS database from
various stencil running instances using a Python script and
generate stencil kernels by varying stencil order (no) from 1
to 3, parameter number (np) from 1 to 4 and array number
(na) in {2, 4, 8, 16}. That is, the number of training kernels
is 3× 4× 4 = 48. The flop density is equal to (1 + (6 +np) ∗
o) ∗ na/2− 1, and reference density is equal to (1 + 6 ∗ no) ∗
na/2 ∗ 4 when the data type is single floating point. We use
three input sizes {1282 × 256, 2562 × 512, 5122 × 1024} and
two target platforms {Sandy Bridge, K20}. Thus, the total
number of running instances is 3× 2× 48 = 288.

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size of optimal-solution space

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

FDTD
HEAT
HIMENO
POISSON
WAVE

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Size of optimal-solution space

FDTD
HEAT
HIMENO
POISSON
WAVE

Figure 10: A properly sized OSS is a key factor to achiev-
ing high performance in FAST. The left graph shows the
performance result using different OSS sizes. In the right
graph, we further combine five closest OSSs as the result to
improve robustness.

Training Model: An appropriate OSS size is important to
FAST. As shown in the left graph in Figure 10, the perfor-
mance achieved for five applications (described in the test
dataset) is far away from the optimal solution when the size
of the OSS is one. When increasing the size, the performance
becomes better and stable once it reaches 20. However, there
are still two applications whose performance is less than 90%
of the optimal solution. We found that the prediction model
is not so robust, where the returned OSS is not the closest
one all the time. We improve FAST further by combining
five closest OSSs predicted by the model and returning it as
the target OSS. The right picture of Figure 10 shows that all
cases achieve 99% of their best performance when the size
of the OSS is larger than 15. As a result, we set the size of
the OSS to be 25 in FAST’s training process and combine
the five closest OSSs to create each resulting OSS.

We compare FAST with baseline programs (Baseline) and
two other stencil optimization frameworks (SDSL, Patus)
with the support of the DSL compiler and autotuning tech-
niques. For simplicity of presentation we only report exper-
imental results for the 128× 128× 256 problem size.

• Baseline: A straightforward implementation of five
benchmark applications according to their stencil for-
mulations. They are compiled by the back-end com-
piler with default optimization flags, i.e., ’-O3 -ipo’
for the Intel compiler, ’-O3 -Xcompiler -O3’ for
CUDA.

Table 5: Autotuning running time in seconds.

Program Feature Analysis Tuning Total
HIMENO 4.6 551 555.6

FDTD 4.8 99 103.8
POISSON 4.4 107 111.4

WAVE 4.6 47 51.6
HEAT 4.2 199 203.2

• SDSL [20]: The stencil domain specific language (SDSL)
can be embedded in C/C++/MATLAB and focuses
on polyhedral compiler optimization for short-vector
SIMD and CUDA as well. There is a built-in autotun-
ing module that implements an improved brute-force
search with the help of tuning annotations in the lan-
guage.

• Patus [35]: The Patus stencil optimization framework
focuses on the autotuning strategy itself, which is the
most similar counterpart to FAST. There is a flexible
autotuner that integrates several efficient heuristic al-
gorithms and provides language support to annotate
the tuning strategy.

We evaluate the autotuning frameworks in terms of auto-
tuning speed and performance. In summary, our framework
achieves the best performance for most of the benchmark
applications. The most remarkable advantage of our frame-
work is that it generates optimized codes in minutes instead
of either hours or days (Table 1). More specifically, it re-
duces tuning steps by 10 − 2697 times compared with the
conventional search-based strategies used extensively in the
counterpart autotuning frameworks.

7.2 Autotuning Speed
Table 5 profiles the execution time of the whole autotun-

ing process. Compared to the existing stencil computation
autotuning systems, which require either hours or days to
perform tuning, FAST finishes the autotuning process in
minutes. A major source of this improvement comes from
the significantly reduced tuning steps. Due to the brute-
force-like search algorithm used in SDSL, we evaluate au-
totuning speed in terms of the tuning step by comparing
with Patus. In fact, Patus adopts several representative
auto-tuning search strategies that appeared in most of au-
totuners [3]. Figure 11 plots the best performance achieved
at each tuning step for both CPU and GPU implementa-
tions. The blue line represents the greedy-based autotuning
used in Patus and the red line represents FAST. Two dotted
lines are used to mark the tuning steps’ satisfying threshold,
which is 95% of best performance. For Patus, the fastest one
costs 225 steps in the case of FDTD and the slowest one costs
2725 steps in the case of Poisson. For FAST, the fastest one
costs one step, and the slowest one only costs 23 steps in
the case of FDTD. In summary, the autotuning overhead is
significantly reduced by an average two orders of magnitude
with FAST. The rapid convergence of FAST is due to the
high quality solutions contained in the predicted OSS. Fig-
ure 12 presents normalized performance of the optimization
solutions in the predicted OSS. The y-axis is the perfor-
mance normalized to the best optimization solution and the
x-axis presents optimization solutions in the predicted OSS.
For HIMENO and WAVE, all optimization solutions fall in
the interval of 90%-100% to of the best performance. For
POISSON and FDTD, there are half of the optimization so-
lutions achieved at least 90% of the best performance. For

193



0 500 1000 1500 2000 2500 3000

6
7

8
9

10

FDTD On E5−2670

Be
st

 P
er

fo
rm

an
ce

 (G
flo

ps
)

2252
0 500 1000 1500 2000 2500 3000

4
6

8
10

HEAT On E5−2670

258412
0 500 1000 1500 2000 2500 3000

3.
3

3.
4

3.
5

3.
6

3.
7 HIMENO On E5−2670

23423
0 500 1000 1500 2000 2500 3000

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0 POISSON On E5−2670

27256
0 500 1000 1500 2000 2500 3000

6.
4

6.
8

7.
2

WAVE On E5−2670

26972

0 200 400 600 800 1000 1200

40
50

60
70

FDTD On Tesla K20c

Tuning Steps

Be
st

 P
er

fo
rm

an
ce

 (G
flo

ps
)

2659
0 500 1000 1500

80
10

0
12

0
14

0

HEAT On Tesla K20c

Tuning Steps

11791
0 500 1000 1500

80
90

10
0

11
0

12
0

HIMENO On Tesla K20c

Tuning Steps

14396
0 500 1000 1500

10
0

11
0

12
0

13
0

14
0

15
0 POISSON On Tesla K20c

Tuning Steps

14381
0 200 400 600 800 1000 1200

80
90

10
0

11
0

12
0 WAVE On Tesla K20c

Tuning Steps

2292

Figure 11: Comparison of autotuning speed for both CPU and GPU implementations.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Optimization Solution(Id)

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

FDTD HEAT HIMENO POISSON WAVE

Figure 12: Performance of optimization solutions in the pre-
dicted OSS.

G
flo

ps

HIMENO FDTD POISSON WAVE HEAT

Baseline
SDSL
Patus
FAST

0
50

10
0

15
0

20
0

HIMENO FDTD POISSON WAVE HEAT

0
30

60
90

Baseline
SDSL
Patus
FAST

12
0 CPU GPU

Figure 13: Comparison of performance in Gflops on for both
CPU and GPU implementations.

HIMENO, only one-third of optimization solutions are bet-
ter than 90% of the best performance. The behaviors of
these optimization solutions are due to the differences be-
tween the applications and the running instances in initial
OSS database. Obviously, WAVE is the most similar case,
which shares most optimal solutions with these running in-
stances in the OSS database. In spite of this, for all five
benchmark applications, their OSS definitely contains sev-
eral optimization solutions that achieve more than 95% of
best performance. This verifies that FAST results in high
accuracy of prediction for optimal solutions.

7.3 Performance
We report performance in Gflops for these five benchmark

applications in Figure 13 on both the CPU and GPU. On av-
erage, FAST improves performance by 3.28 times over Base-
line, 100% times over SDSL and 18% times over Patus on
the CPU, and by 4.86 times over Baseline, 8.3 times over
SDSL and 1.25 times over Patus on the GPU.

CPU: The left bar graph in Figure 13 shows performance
comparison for the CPU implementations. First, for the
CPU implementations, FAST improves performance by 1.4-
6.2 times over Baseline, 64%-120% over SDSL and -15%-53%
over Patus, respectively. FAST employs the 2.5D blocking
strategy [38] to reuse data between two adjacent blocks. As a
consequence, for memory bound applications, such as FDTD

and HIMENO, we obtain better performance results than
Patus. However, for applications with high operational in-
tensity, such as HEAT, Patus surpasses FAST due to its ex-
plicit SIMD optimization by using intrinsic functions. SDSL
also works well on short-vector SIMD architectures and per-
forms tiling optimizations on temporal and spatial dimen-
sions. However, the time-tiling used is restricted by the
growing size of tiles when the dimension is larger than two.
That leads to its unsatisfactory performance on five three-
dimension applications. Second, the performance improve-
ment differs with the five stencil applications. For example,
FAST achieves higher speedups for HEAT and WAVE than
for HIMENO and FDTD. The difference is related to the
algorithmic feature of Operational intensity, which sets the
performance upper bound according the roofline model [52].

GPU: The right bar graph in Figure 13 shows the per-
formance comparison for the GPU implementations. FAST
improves performance by 58% – 7 times over Baseline, 4.24
– 12.3 times over SDSL and 39% – 2.48 times over Pa-
tus, respectively. Unlike the implementations on the CPU,
FAST outperforms the GPU counterparts. One major rea-
son is that our optimization solutions adopt 2.5D blocking,
shared memory, constant memory and texture reference op-
timization strategies, but both SDSL and Patus only employ
straightforward parallelization and blocking strategies.

8. RELATED WORK
Autotuning has emerged as a critical strategy for achiev-

ing high performance as architectural complexity grows. A
number of autotuning frameworks have been developed for
building efficient, portable libraries or frameworks in spe-
cific domains. For example, PHiPAC [5] is an autotuning
system for dense matrix multiplication. ATLAS [51] utilizes
empirical autotuning to produce a cache-contained matrix
multiply. FFTW [16] uses empirical autotuning to com-
bine solvers for FFTs. Other autotuning systems include
SPARSITY [23] for sparse matrix computations, SPIRAL
[39, 49, 15] for digital signal processing, UHFFT [1] for
FFT on multicore systems, and OSKI [50] for sparse matrix
kernels. ActiveHarmony [44, 46] provides a general frame-
work for tuning configurable libraries and exploring different
compiler optimizations. Two major approaches of autotun-
ing are search-based and prediction-based. Search-based au-
totuning is a generic but time consuming approach, which
empirically evaluates candidates in the optimization space.
For this reason, a number of strategies have been applied to
speed up search, such as pruning, heuristics and analytical
models [17, 9, 25, 52, 31, 19, 41, 20, 33, 12]. Prediction-

194



based autotuning leverages prior knowledge to achieve the
best optimization solution directly and has very low over-
head. It is always applied to the problem of code solution
or algorithm selection [30, 42, 45, 28, 18, 14, 24].

On the other hand, as a higher level of abstraction, DSLs
are promising trend to improve usability since many appli-
cation domains do not have a clear abstraction as a library
interface. They leverage a specialized compiler to help ap-
plication experts easily write high performance codes and
facilitate optimization. Several successful attempts include
graph [22], multigrid [2] and stencil [34] computations.

FAST combines techniques of DSL and autotuning for op-
timizing stencil computation. Recent work [10, 2, 43, 35,
12, 31, 27, 26, 20] has demonstrated their strength in au-
tomatic optimization on diverse architectures. FAST shares
the same programming productivity of DSLs with these works
for domain application experts and further exploits using the
DSLs to extract features that help with autotuning. The
features extraction is an important aspect of our autotuning
approach compared to existing ones. For example, some gen-
eral frameworks like Intelligent Compilers [6], CHiLL [47],
Patus [35] and Orio [19] are designed for autotuning compiler
or library developers instead of domain application experts.
They force an experienced user to write a script for tuning
configurations. Afterwards, FAST takes a prediction-based
approach to deal with stencil autotuning that differs from
previous work. First, previous autotuning systems employ
pruning and heuristic algorithms to search the optimization
space. They establish the optimization space using all con-
figurable parameters exposed in the strategy definition and
some internal default parameters (loop nest unrolling fac-
tors, padding). Then, multiple search algorithms are ap-
plied, such as Nelder-Mead simplex search, dynamic pro-
gramming and stochastic optimization methods including
random, evolutionary, and hill climbing. Recently, Open-
Tuner [3] allows many search techniques to work together
and supports customizable configuration representations of
a sophisticated search technique. Instead of using these
search-based approaches, FAST builds a self-learning OSS
database to automatically learn an OSS prediction model
and predicts optimal solutions directly, which significantly
decreases tuning overhead.

9. CONCLUSION
In this paper, we propose and implement a framework

based on the OSS model for stencil autotuning (FAST).
Compared to previous work, FAST adopts a prediction-based
approach to autotune stencil computations, and greatly de-
creases tuning overhead. The key insight behind FAST is
that that two running instances have a small OSS with high
overlap ratio if their features are of high similarity. The ex-
periments on both x86 multicore CPU and NVIDIA GPU
show that FAST outperforms its counterparts in terms of
both performance and autotuning speed. In particular, the
autotuning speed is improved by 10 − 2697 times over the
conventional autotuning strategy.

10. ACKNOWLEDGMENTS
We would like to express our gratitude to all reviewer’s

constructive comments and Dr. Brad Chamberlain for help-
ing us polishing this paper. This work is supported by Na-
tional Natural Science Foundation of China, under grant

no. (61272134, 31327901, 91430218, 60921002, 60925009,
61472395), National 863 Program (2009AA01A129) and 973
Program (2012CB316502 and 2011CB302502).

References
[1] A. Ali, L. Johnsson, and J. Subhlok. Scheduling fft

computation on smp and multicore systems. In Proceedings of
the 21st annual international conference on Supercomputing,
pages 293–301. ACM, 2007.

[2] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. Petabricks: a language and
compiler for algorithmic choice. In Proceedings of the 2009
ACM SIGPLAN conference on Programming language design
and implementation, volume 44. ACM, 2009.

[3] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley,
J. Bosboom, U.-M. O’Reilly, and S. Amarasinghe. Opentuner:
An extensible framework for program autotuning. In
International Conference on Parallel Architectures and
Compilation Techniques, Edmonton, Canada, August 2014.

[4] P. Basu, M. Hall, M. Khan, S. Maindola, S. Muralidharan,
S. Ramalingam, A. Rivera, M. Shantharam, and A. Venkat.
Towards making autotuning mainstream. The International
Journal of High Performance Computing Applications,
27(4):379–393, 2013.

[5] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel.
Optimizing matrix multiply using phipac: a portable,
high-performance, ansi c coding methodology. In Proceedings
of the 11th international conference on Supercomputing,
pages 340–347. ACM, 1997.

[6] J. Cavazos. Intelligent compilers. In Cluster Computing, 2008
IEEE International Conference on, pages 360–368. IEEE,
2008.

[7] C. Chen, J. Chame, and M. Hall. Combining models and
guided empirical search to optimize for multiple levels of the
memory hierarchy. In International Symposium on Code
Generation and Optimization, pages 111–122. IEEE, 2005.

[8] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven
autotuning of sparse matrix-vector multiply on gpus. In
Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume 45,
pages 115–126. ACM, 2010.

[9] M. Christen, O. Schenk, and Y. Cui. Patus for convenient
high-performance stencils: evaluation in earthquake
simulations. In High Performance Computing, Networking,
Storage and Analysis (SC), 2012 International Conference
for, pages 1–10. IEEE, 2012.

[10] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing
for reduced code space using genetic algorithms. ACM
SIGPLAN Notices, 34(7):1–9, 1999.

[11] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and
K. Yelick. Optimization and performance modeling of stencil
computations on modern microprocessors. SIAM review,
51(1):129–159, 2009.

[12] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, page 4. IEEE
Press, 2008.

[13] C. Dubach, T. Jones, and M. O’Boyle. Microarchitectural
design space exploration using an architecture-centric
approach. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
262–271. IEEE Computer Society, 2007.

[14] E. Fink. How to solve it automatically: Selection among
problem solving methods. In AIPS, pages 128–136, 1998.

[15] F. Franchetti, F. de Mesmay, D. McFarlin, and M. Püschel.
Operator language: A program generation framework for fast
kernels. In Domain-Specific Languages, pages 385–409.
Springer, 2009.

[16] M. Frigo and S. G. Johnson. The design and implementation of
fftw3. Proceedings of the IEEE, 93(2):216–231, 2005.

195



[17] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. A case for
machine learning to optimize multicore performance. In First
USENIX Workshop on Hot Topics in Parallelism
(HotPar’09), 2009.

[18] A. Guerri and M. Milano. Learning techniques for automatic
algorithm portfolio selection. In ECAI, volume 16, page 475,
2004.

[19] A. Hartono, B. Norris, and P. Sadayappan. Annotation-based
empirical performance tuning using orio. In Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1–11. IEEE, 2009.

[20] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet,
J. Ramanujam, and P. Sadayappan. A stencil compiler for
short-vector simd architectures. In Proceedings of the 27th
international ACM conference on International conference on
supercomputing, pages 13–24. ACM, 2013.

[21] R. Himeno. Himeno benchmark, 2011.

[22] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-marl: a
dsl for easy and efficient graph analysis. In Proceedings of the
seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems,
volume 40, pages 349–362. ACM, 2012.

[23] E.-J. Im and K. Yelick. Optimizing sparse matrix computations
for register reuse in sparsity. In Computational

ScienceâĂŤICCS 2001, pages 127–136. Springer, 2001.

[24] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V.
Kale. Predicting application performance using supervised
learning on communication features. In Proceedings of SC13:
International Conference for High Performance Computing,
Networking, Storage and Analysis, page 95. ACM, 2013.

[25] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An
auto-tuning framework for parallel multicore stencil
computations. In Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pages 1–12. IEEE,
2010.

[26] S. Kamil, D. Coetzee, and A. Fox. Bringing parallel
performance to python with domain-specific selective embedded
just-in-time specialization. In Python for Scientific Computing
Conference (SciPy), 2011.

[27] M. Khan, P. Basu, G. Rudy, M. Hall, C. Chen, and J. Chame.
A script-based autotuning compiler system to generate
high-performance cuda code. ACM Transactions on
Architecture and Code Optimization (TACO), 9(4):31, 2013.

[28] L. Kotthoff, I. P. Gent, and I. Miguel. A preliminary evaluation
of machine learning in algorithm selection for search problems.
In Fourth Annual Symposium on Combinatorial Search, 2011.

[29] K. S. Kunz and R. J. Luebbers. The finite difference time
domain method for electromagnetics. CRC press, 1993.

[30] J. Li, G. Tan, M. Chen, and N. Sun. Smat: an input adaptive
auto-tuner for sparse matrix-vector multiplication. In ACM
SIGPLAN Notices, volume 48, pages 117–126. ACM, 2013.

[31] T. Lutz, C. Fensch, and M. Cole. Partans: An autotuning
framework for stencil computation on multi-gpu systems. ACM
Transactions on Architecture and Code Optimization
(TACO), 9(4):59, 2013.

[32] A. D. Malony, J. Cuny, and S. Shende. Tau: Tuning and
analysis utilities. Technical report, LALP-99–205, Los Alamos
National Laboratory Publication, 1999.

[33] A. Mametjanov, D. Lowell, C.-C. Ma, and B. Norris.
Autotuning stencil-based computations on gpus. In Cluster
Computing (CLUSTER), 2012 IEEE International
Conference on, pages 266–274. IEEE, 2012.

[34] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka. Physis:
an implicitly parallel programming model for stencil
computations on large-scale gpu-accelerated supercomputers.
In High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for, pages
1–12. IEEE, 2011.

[35] C. Matthias, S. Olaf, and B. Helmar. Patus: A code generation
and autotuning framework for parallel iterative stencil
computations on modern microarchitectures. In Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 676–687. IEEE, 2011.

[36] J. Meng and K. Skadron. Performance modeling and automatic
ghost zone optimization for iterative stencil loops on gpus. In
Proceedings of the 23rd international conference on
Supercomputing, pages 256–265. ACM, 2009.

[37] P. Micikevicius. 3d finite difference computation on gpus using
cuda. In Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units, pages 79–84. ACM,
2009.

[38] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey.
3.5-d blocking optimization for stencil computations on modern
cpus and gpus. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–13. IEEE
Computer Society, 2010.

[39] M. Püschel, J. M. Moura, B. Singer, J. Xiong, J. Johnson,
D. Padua, M. Veloso, and R. W. Johnson. Spiral: A generator
for platform-adapted libraries of signal processing alogorithms.
International Journal of High Performance Computing
Applications, 18(1):21–45, 2004.

[40] A. Qasem, M. J. Cade, and D. Tamir. Improved energy
efficiency for multithreaded kernels through model-based
autotuning. In Green Technologies Conference, 2012 IEEE,
pages 1–6. IEEE, 2012.

[41] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines. ACM SIGPLAN Notices, 48(6):519–530,
2013.

[42] J. R. Rice. The algorithm selection problem. 1975.

[43] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and
C. E. Leiserson. The pochoir stencil compiler. In Proceedings
of the twenty-third annual ACM symposium on Parallelism in
algorithms and architectures, pages 117–128. ACM, 2011.

[44] C. Ţăpuş, I.-H. Chung, J. K. Hollingsworth, et al. Active
harmony: Towards automated performance tuning. In
Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, pages 1–11. IEEE Computer Society Press,
2002.

[45] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M.
Amato, and L. Rauchwerger. A framework for adaptive
algorithm selection in stapl. In Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pages 277–288. ACM, 2005.

[46] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K.
Hollingsworth. A scalable auto-tuning framework for compiler
optimization. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–12.
IEEE, 2009.

[47] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K.
Hollingsworth. A scalable autotuning framework for compiler
optimization. In Proceedings of the International Parallel and
Distributed Processing Symposium, 2009.

[48] D. Unat, X. Cai, and S. B. Baden. Mint: realizing cuda
performance in 3d stencil methods with annotated c. In
Proceedings of the international conference on
Supercomputing, pages 214–224. ACM, 2011.

[49] Y. Voronenko, F. de Mesmay, and M. Püschel. Computer
generation of general size linear transform libraries. In
Proceedings of the 7th annual IEEE/ACM International
Symposium on Code Generation and Optimization, pages
102–113. IEEE Computer Society, 2009.

[50] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of
automatically tuned sparse matrix kernels. In Journal of
Physics: Conference Series, volume 16, page 521. IOP
Publishing, 2005.

[51] R. C. Whaley and J. J. Dongarra. Automatically tuned linear
algebra software. In Proceedings of the 1998 ACM/IEEE
conference on Supercomputing, pages 1–27. IEEE Computer
Society, 1998.

[52] S. Williams, A. Waterman, and D. Patterson. Roofline: an
insightful visual performance model for multicore architectures.
Communications of the ACM, 52(4):65–76, 2009.

196


	Introduction
	Motivation
	Autotuning Framework
	Feature Analysis
	Features
	Compiler Support

	Optimal-Solution Space Module
	Optimal-Solution Space 
	Build a Model
	OSS Database
	Generate And Validate OSS

	Code Generation
	Evaluation
	Experimental Setup
	Autotuning Speed
	Performance

	Related Work
	Conclusion
	Acknowledgments



