
NvWa: Enhancing Sequence Alignment Accelerator
Throughput via Hardware Scheduling

Yewen Li1,2, Xueqi Li�1, Ruihao Gao1,2, Wanqi Liu1,2, Guangming Tan1,2
1 State Key Lab of Processors, ICT, CAS

2 University of Chinese Academy of Sciences, Beijing, China
Email: {liyewen19s, lixueqi, gaoruihao20s, liuwanqi18z, tgm}@ict.ac.cn

Abstract—Sequence alignment is the most time-consuming step
in the genome analysis pipeline. Since sequence alignment gen-
erally follows the seed-and-extension paradigm, prior proposed
hardware accelerators either opt to accelerate the seeding phase
or the seed-extension phase. However, the diversity of each
sequence in the alignment workflow leads to the pipeline stall
or bubbles, which finally results in a decreased throughput for
the end-to-end sequence alignment.

In this paper, we propose NvWa, which is a hardware
scheduling accelerator for sequence alignment. To solve the
diversity problem, we propose three novel scheduling mechanisms
and corresponding architecture, which target the seeding phase,
the seed-extension phase, and the interaction between the two
phases, respectively. For the seeding phase, we propose a Seeding
Scheduler to schedule all idle seeding units in only one cycle. For
the seed-extension phase, the Extension Scheduler can achieve
both lower latency and higher parallelism when facing seed-
extension tasks with different scales. Between the two phases,
an efficient Coordinator caches and dispatches seeding hits to
optimal and sub-optimal seed-extension units. Furthermore, to
avoid algorithmic obsolescence for the new sequence technologies,
we propose a loosely coupled design, which decouples the data
path and the control scheduling path. Experimental results show
that NvWa can achieve 493×, 200×, 12.11×, 2.30× speedup and
14.21×, 5.60×, 4.34×, 5.85× energy reduction when compared
with a 16-thread CPU baseline, an NVIDIA A100 GPU, and two
state-of-the-art accelerators, respectively.

I. INTRODUCTION

Sequence alignment is the first essential and the most
time-consuming step in genome data analysis [28], [66].
In sequence alignment (aka. read alignment), each read is
matched to its possible locations in the reference genome.
Generally, the sequence alignment follows the seed-and-extend
paradigm and can be divided into two phases, seeding and
seed-extension [36], [38]–[41]. The seeding phase performs
exact matching to generate a set of hits that indicate the raw
reads’ possible alignment locations. The seed-extension phase
adopts the approximate string-matching methods to extend the
hits. During this process, the two phases follow the producer-
consumer model, which means the seeding phase produces
many candidates (hits), and they will be extended to longer
sub-strings one by one in the seed-extension phase.

Previous work has designed efficient accelerators for the
seed-and-extend paradigm since it occupies more than 80%
of the time of the whole sequence alignment [6], [18], [66].

� Corresponding Author

Several studies optimize the seeding phase [6], [10], [18],
[21], [26], [33], [57], [60], [61], [64], [65]. MEDAL [32] and
FindR [69] use device properties such as PIM to accelerate the
original algorithm, while EXMA [33] and ERT [57] propose
new seeding algorithms (e.g., MTL-index and Enumerated
Radix Tree). Some other work accelerates the seed-extension
phase [13], [15], [17], [20], [23], [24], [27], [29], [34], [42],
[44], [47], [58], [60], [61]. SeedEx [24] and Darwin [60] are
based on traditional dynamic programming algorithms (e.g.,
Needleman-Wunsch, Smith-Waterman, and banded Smith-
Waterman), while GenAx [23] and GenASM [16] are based on
novel approximate string matching algorithms (e.g., Automata
and Bitap).

According to our observation, a significant diversity prob-
lem is haunting the throughput of existing designs (cf.
Sec. III). The performance of previous designs may not be
fully utilized due to system starvation or blocking. Plenty of
work uses two different computing units instead of one for
different phases since the seeding phase is memory-bound and
the seed-extension phase is compute-bound. The design of the
two different computing units and the characteristics of the
input read jointly result in the diversity problem. We argue that
multi-phase scheduling is a promising solution to this problem.
However, scheduling is not trivial because of three challenges:
Seeding Termination Diversity (Challenge- 1), Extension
Scales Diversity (Challenge- 2), and Hit Characteristics
Diversity (Challenge- 3).

Recent hardware designs have adopted different scheduling
methods but do not solve these challenges well. For example,
Darwin [60] utilized software API to control the dataflow
and hardware execution. SeedEx [24] utilized a non-blocking
producer-consumer buffer for communication between FPGA
and host. ERT [57] was based on SeedEx and employed a
queue to deal with variable tree traversal times, and scheduled
walks from other reads in the seeding phase. However, the
software API of Darwin suffered from hardware and software
switching overhead. The buffer of SeedEx can only provide
coarse-grained data control and cannot exploit the data char-
acteristics. The queue in ERT ignored the inter-unit level
diversity. Neither approach is good enough.

In this paper, we propose NvWa1, which leverages multi-

1NvWa is named after a goddess of mending the cracks in the sky in
Chinese mythology, indicating our accelerator fills the gap between the
seeding phase and the seed-extension phase.

phase scheduling mechanisms and architectures to enhance the
throughput of sequence alignment accelerators.

For Challenge- 1 , we focus on improving the resource
utilization of seeding units and avoiding the starvation of
the seed-extension unit. We propose a Seeding Scheduler for
the seeding phase, which dynamically allocates unprocessed
reads to idle seeding units. We achieve the scheduling of
all idle units in only one cycle at 1GHz at the algorithmic
and microarchitectural levels, respectively. For Challenge- 2 ,
we propose an Extension Scheduler for the seed-extension
phase. We first quantitatively analyze that existing designs
can not satisfy the different task scales and then propose
a resource allocation strategy to achieve lower latency and
higher parallelism when dealing with tasks of different scales.
And we further use this strategy to configure the number of
processing elements (PEs) of the seed-extension units. For
Challenge- 3 , we design a Coordinator to address the inter-
phase problem caused by the seed-and-extend paradigm. The
Coordinator decreases the system’s sensitivity to input reads
distribution and leverages a greedy allocating algorithm and
lightweight architecture to assign seeding hits to optimal or
sub-optimal seed-extension units.

In addition, the computing units (i.e., the seeding units and
the seed-extension units) of NvWa are faithful to the standard
read alignment software, which allows us to have no loss of
accuracy. Also, our designs (i.e., the Seeding Scheduler, the
Extension Scheduler, and the Coordinator) are orthogonal to
previous work since we focus on loosely coupled scheduling
design rather than proposing a new design of computing units.

Our specific contributions are listed as follows:
• We identify an execution diversity problem that appears

in the seed-and-extend paradigm, which limits the end-
to-end sequence alignment throughput.

• We propose a high-throughput and efficient hardware-
scheduling-based accelerator, i.e., NvWa, for the end-to-
end sequence alignment pipeline. In addition, NvWa has
no loss of accuracy and is orthogonal to previous designs.

• We introduce multi-phase scheduling mechanisms and
microarchitecture implementation in NvWa. Specifically,
We design the Seeding Scheduler, the Extension Sched-
uler, and the Coordinator, which target the seeding phase,
the seed-extension phase, and the interaction, respectively.

• Our experimental evaluation shows that NvWa can pro-
vide 493×, 200×, 12.11×, 2.30× speedup and, 14.21×,
5.60×, 4.34×, 5.85× energy saving over a 16-thread
BWA-MEM [38], GASAL2 [5], GenAx [23], and Gen-
Cache [49].

II. BACKGROUND

A. Execution Pipeline

As shown in Fig. 1, the read alignment pipeline has the
following four steps [7], [8], [37], [50], [55].

• Step- 1 : Find Seeds. The read accepts a start position
as input and extends forward and backward as long as
possible using exact matching algorithms. After this step,

Seed 0 Seed 1 Seed 2Seed 3 Seed 0 Seed 2+3Seed 1

Extension 1Extension 0 Extension 0

Score
40

Score
65<

Extension
Result

❶ Find Seeds ❷ Filter and Chain

❸ Seeds Extension ❹ Get Result

R:

Q:

R:

Q:

R:

Q:

R:

Q:

Fig. 1. Sequence alignment pipeline of a single read.

we get some small read subsets called seeds, which are
noted as Seed 0, Seed 1, Seed 2, and Seed 3 in Fig. 1.

• Step- 2 : Filter and Chain. Short seeds are filtered out
while seeds with close coordinates chain each other into
longer seeds by introducing a few edit errors. In Fig. 1,
Seed 1 is filtered out, and Seed 2 and Seed 3 are chained
to Seed 2+3.

• Step- 3 : Seeds Extension. Potential candidate seeds
(Seed 0, Seed 2+3) are extended forward and back-
ward using compute-intensive approximate matching al-
gorithms.

• Step- 4 : Get Result. We select the Extension 1 as the
final result, which is the extension version of Seed 2+3
and has the highest score.

B. Widely Accepted Algorithms

Seeding Phase Algorithm. The FM-index search algo-
rithm [22] and the Hash-based search algorithm [9] are
widely used in this phase. The FM-index search algorithm
realizes a fast search of candidate locations in the genome
for short sequences by retrieving a BWT-based compression
index structure for the reference genome. The drawback of
this algorithm is the slow speed of matching due to frequent
memory access. The Hash-based search algorithm scans the
reference genome sequence and splits it into small fragments
of length k, also known as k-mer, and builds a hash table by
counting the occurrence of each k-mer. The exact matching
process is to find the occurrence position of k-mers. The
benefit of this method is the relatively regular memory access,
and the drawback is its O(4k) memory consumption. Some
other algorithms, such as ERT (Enumerated Radix Trees) [57]
and D-SOFT [60], [61] are also used in this phase.

Seed-Extension Phase Algorithm. The Smith-Waterman
algorithm [56] is commonly used in this phase since it
can provide local-optimal alignment for biological scoring
schemes. A typical scoring scheme has three parts: substitution
matrix, open gap penalty, and extension gap penalty. The
two sequences to be aligned operate in matrix-fill and trace-
back two steps using the scoring schemes [60]. Several other

algorithms, such as Bitap [16] and Automata [23], can also be
used to perform this phase.

C. State-of-the-Art Accelerators

We present several typical studies relevant to the following
papers, and more details about other state-of-the-art accelera-
tors are presented in Sec. VII.

Darwin [60] and Darwin-WGA [61]. For the seeding
phase, they leverage a Hash-based search algorithm [30] to al-
leviate the random access problem of the traditional FM-index
search algorithm. For the seed-extension phase, Darwin and
Darwin-WGA propose GACT based on the Smith-Waterman
algorithm, which can use constant hardware resources to
perform an arbitrary length matching.

GenAx [23] and GenCache [49]. The contribution of
GenAx is mainly focused on the seed-extension phase. It
improves Levenshtein Automata by proposing Silla, which can
support the feature of string matching and supports arbitrary
length matching. For the seeding phase, GenAx uses a similar
approach as Darwin and Darwin-WGA. GenCache, which is
based on GenAx, improves the throughput and reduces the
bandwidth requirement using algorithm-hardware co-design.

III. MOTIVATIONS AND CHALLENGES

A. Motivations

Diversity Problem in Seed-and-Extend Paradigm.
Fig. 2(a) depicts the execution time breakdown of the seeding
and seed-extension phase when running the standard software
BWA-MEM [38] using massive reads sampled from the stan-
dard genome sequence2. The hardware platform and genome
datasets will be described in Sec. V-B. Fig. 2(b) is the zoom-in
on execution time breakdown for Read ID from 350 to 400 of
Fig. 2(a).

For each read, it is evident that the proportion of the seeding
and the seed-extension phase varies, and the total execution
time is also different. If the running time of the seeding phase
in a certain period is lower than the seed-extension phase,
a large number of hits can not be processed, and the entire
system is congested, which wastes the hardware acceleration
efficiency of the seeding phase. Otherwise, if the execution
time of the seed-extension phase in a certain period is lower
than the seeding phase, the system is starved. The efficiency
of the seed-extension phase is wasted too. These states affect
resource utilization and downgrade performance.

The Need for Efficient Multi-Phase Hardware Sched-
ulers. Fig. 3(a) shows an abstraction of the accelerator de-
sign used so far [23], [24], [57], [60], [61] to accelerate
the seed-and-extend pipeline yet fails to solve the problem
described above. In contrast, Fig. 3(b) illustrates that intro-
ducing scheduling mechanisms can efficiently solve the above
problems.

2We profile BWA-MEM as it is the de facto standard 2nd generation read
alignment software [14], [43], [46], [53], [66]. Other optimized versions, such
as BWA-MEM2 [62], have similar statistical properties since their algorithms
have not been fundamentally changed.

0 80 16
0
24

0
32

0
40

0
48

0

0

1000

2000

3000

Read ID

T
im

e
(u

s
)

Seeding

Seed-Exten
sion

35
0
35

2
35

4
35

6
35

8
36

0
36

2
36

4
36

6
36

8
37

0
37

2
37

4
37

6
37

8
38

0
38

2
38

4
38

6
38

8
39

0
39

2
39

4
39

6
39

8
40

0

0

200

400

600

800

Read ID

T
im

e
(u

s
)

Seeding Seed-Extension

(a) (b)

Fig. 2. Execution time breakdown of the seeding and seed-extension phases
for 500 reads sampled from NA12878. (b) Zoom in on the execution time
breakdown for Read ID from 350 to 400.

Next BatchCurrent Batch
4 6 75

Buffer or Software

3-3

3-4

2-2

3-2

4-1

3-1

4-2

1-1 1-2 2-1 2-2 2-3 1-1 1-2 2-1 2-2 2-3

6-1 6-2

75

2 3 8 9 10 11 4 6 75

3-4

3-3 4-2

6-2

6-1 4-1

3-1 3-2

7958

2 3 8 9

Seeding Sched.

Coordinator

Extension Sched.

Reads:

hits:

Seeding Units
(SUs):

Seed-Extension
Units :

Read 1
completed

Read 1
completed

Read 2 waits
for hit 2-2

Read 2
completed

Stalled by
prev. long hits

Stalled by
batch-reading

(a) (b)

Fig. 3. The execution breakdown with or without scheduling for accelerating
the seed-and-extend paradigm. (a) The traditional approach used so far [23],
[24], [57], [60], [61]. (b) The traditional approach + multi-stage scheduling
(the Seeding Scheduler, the Extension Scheduler, and the Coordinator).

• A coarse-grained Read-in-Batch strategy results in the
seeding units (SUs) being idle. In contrast, when the
Seeding Scheduler is integrated (in Fig. 3(b)), the input
reads can be controlled at a fine-grained level. For ex-
ample, SU 1 and SU 3 in Fig. 3(b) can load read 8 and
read 9, which are not loaded in Fig. 3(a) since the current
batch is not completely finished.

• The execution time of seed-extension units (EUs) is
sensitive to the length of the input hits. This phenomenon
causes that hits with different lengths can not be allocated
to the most optimal computing resources. In contrast,
fine-grained control over EUs is available when Extension
Scheduler is introduced.

• Additionally, the Coordinator in Fig. 3(b) can evaluate the
length of the hit and then assign the optimal computing
unit for the hits with different lengths. For instance,
Fig. 3(b) can allocate computing units for hit 6-1, which
is blocked in Fig. 3(a) since hit 2-2 is not allocated the
optimal computing unit.

B. Challenges

We summarize three design challenges for designing effi-
cient multi-phase hardware schedulers as follows.

Challenge- 1 : Seeding Termination Diversity. SUs are
the data producers of the entire accelerator, and they must

keep on generating seeds to avoid the starvation of EUs. The
key challenge is to schedule the idle SUs efficiently when
considering that the execution time of SUs is sensitive to the
input reads.

Challenge- 2 : Extension Scales Diversity. EUs are the
consumers in the system, and they are required to be low
latency and high parallelism to consume the hits generated
during the seeding phase. As shown in [20], the length of hits
extended in the seed-extension phase is variant significantly for
each read. The key challenge is to avoid the under-utilization
and workload imbalance of the EUs when the hardware design
is specified in advance.

Challenge- 3 : Hit Characteristics Diversity. Since the
read alignment follows the seed-and-extend paradigm, all valid
hits generated by SUs need to be executed by EUs. The key
challenge is to cache and analyze them in a lightweight way
since the number and characteristics of the hits generated by
each SUs are varied.

IV. ARCHITECTURE DESIGN

A. Architecture Overview

Fig. 4 depicts the architecture overview of NvWa, which in-
cludes the following five parts and solves the three challenges
mentioned above.

Seeding Scheduler Coordinator

 Read Scratchpad
Memory (SPM)

SU
s

Ctrl Path Data Path

Allocate
Judger

One‐Cycle Read Allocator
Hits Buffer

Hits
Allocator

EU
s U
ni
fie

d
In
te
rf
ac
e

Extension Scheduler
Hybrid Units Manager

Hybrid Units Strategy

Allocate Trigger

Fig. 4. Architecture overview of NvWa

Solving Challenge- 1 . The Seeding Scheduler is targeted
to realize the efficient execution of the SUs when faced with
workloads that require different execution times and can not
be predicted in advance (cf. Sec. IV-B). The One-Cycle Read
Allocator avoids the competing problem of idle SUs and
assigns unfinished workloads to idle SUs within one cycle,
and the Read SPM is used to prefetch the reads that are to be
processed, hiding the access latency of DRAM.

Solving Challenge- 2 . The Extension Scheduler is designed
to maximize the efficient execution of regular accesses and
computations of EUs (cf. Sec. IV-C). The Allocate Trigger
is responsible for checking the execution status of the EUs
and deciding whether to send a scheduling request to the
Coordinator based on the number of idle units. The Hybrid
Units Strategy acts as a guideline to modify the EUs to provide
low latency and high parallelism. The Hybrid Units Manager

receives the scheduling results from the Hits Allocator and
distributes them to the specified EUs.

Solving Challenge- 3 . The Coordinator buffers the hits
finished by the SUs and allocates them reasonably to the
idle EUs (cf. Sec. IV-D). The Hits Buffer receives the results
(hits) of SUs and sends the hits to the Hits Allocator for
scheduling. The Allocate Judger receives scheduling requests
from the Allocate Trigger. It activates the Hits Allocator to
perform a round of hits scheduling. The Hits Allocator, the
core component of the Coordinator, dispatches the data in the
Hits Buffer to the optimal or near-optimal idle EUs with a
low-latency greedy allocation architecture.

Other Components. The SUs and The EUs refer to prior
accelerators that are faithful to the standard algorithm and
can access the above three scheduling components through
the Unified Interface. The implementation of SUs and EUs is
described in Sec. V-A. The utility of the Unified Interface is
discussed in Sec. VI.

B. Seeding Scheduler Design

Inefficiency of Current Scheduling Strategy. Previous
work included basic schedulers but was not sufficiently op-
timized. Read-in-Batch is a typical approach adopted by
state-of-the-art seeding accelerators such as GenAx [23] and
ERT [57]. This solution is easy to implement but suffers from
poor utilization of SUs when considering that the execution
time of SUs is sensitive to input reads3. Fig. 5(a) illustrates
the execution flow using this strategy to schedule four SUs.
The system starts at cycle 0, and all SUs are idle. At cycle T0,
four SUs load four reads from memory and start to execute the
seeding phase. SU 1 and SU 3 are done at cycle T1, and SU
2 is done at cycle T2. Since not all SUs are finished, we can
not feed data for these idle SUs. The slowest SU 0 finishes
at T3, and all SUs start computing the next batch at T3 + 1
when the reads are prefetched. From this toy example, we can
observe that the Read-in-Batch strategy leads to idle SUs and
does not provide a high resource utilization.

Our One-Cycle Scheduling Strategy. We introduce One-
Cycle Read Allocator that correctly allocates to each idle SU
within one cycle to solve this problem. The key idea of the
One-Cycle Read Allocator is assigning a priority correspond-
ing to the index for each computing unit. The idle computing
unit with a smaller index has higher priority than the idle unit
with a bigger index. Suppose we have N SUs and each of them
has a status si, where si is 0 for idle, and si is 1 for busy.
ai is the allocated read index of data for each unit, and the
global read index offset is g. Then, at each cycle, the updating
formula of ai and g is

ai ←

{
g + 1 +

∑i−1
k=0 (1− sk) if si = 0

ai if si = 1
, (1)

3The execution time of the Hash-based search algorithm is as input-sensitive
as that of the FM-index search algorithm. For example, the number of DRAM
accesses for Darwin [60] is 2+P. 2 is the times to access the pointer table.
P is the times to access the position table, which is a variable for different
k-mers.

g ← g +
∑N−1

k=0
(1− sk) . (2)

A toy example is given in Fig. 5(b). At cycle T1 + 2, unit
1 and unit 2 will be allocated with read 4 and read 5. The
read index allocated to unit 1 is 4, given that unit 0 is busy.
Furthermore, unit 2 will be allocated with read 5, considering
that unit 0 is idle. Using this strategy, we can allocate reads to
multiple units in parallel. Compared to Fig. 5(a), this strategy
can feed unprocessed reads to idle units at cycle T1, cycle T2,
and cycle T3.

Microarchitecture Design. Fig. 6 shows the microarchitec-
ture of the One-Cycle Read Allocator. The masks shown in the
upper left corner represent the hardware design of the priority
described above. For example, unit 0 corresponds to a mask of
0000, and unit 3 corresponds to 1110. Our microarchitecture
has five steps. 1 Inverse unit status and unit status[i]. 2 Get
the number of 1’s before unit[i] by taking a AND operation
between unit mark table[i] and unit status. 3 Obtain the
exact number of 1’s using a PopCount Tree, the number of
1’s indicates the number of units that need to be loaded a new
read before unit[i]. This result indicates the local loading read
index of the unit[i] when considering all the idle units at this
cycle. 4 Add this result with read offset to get the global
loading read index. 5 Check if the unit[i] needs to load a
new read using a Mux operation.

The latency of the design depends on the depth of the
PopCount tree. In practice, the number of seeding units is
from 64 to 512, and the depth of the tree is from 6 to 9,
which makes the hardware latency requirements can be easily
satisfied at 1 GHz.

Discussion of Intra-Unit Level Scheduling Strategy. The
switching context of ERT [57] is a scheduling mechanism
within each SU for hiding the latency of accessing DRAM.
Compared with ERT, the One-Cycle Read Allocator eliminates
the bubbles caused by DRAM latency at the intra-unit level
and the ones caused by the diversity of execution time at
the inter-unit level. The One-Cycle Read Allocator is used

(a)

Execution Time: T

=

1 2 63 4 5 7

Next Allocating Read Index: 11

(b)

Execution Time: T

T:

1 2 63 4 5 7

11
4

11 + 0

=12
7

11 + 1

8 8

11 1 0 0 0 0 0

1

1 1 1 1 1 0 0

11 1 0 1 1 0 1

1

1 1 0 1 1 0 1

P
o

p
C

o
u

n
t

Tr
e

e

(c)

11

T + 2

1 2 63 4 5 7 8

12 11

T + 7

1 2 63 4 5 7 8

A
N

D

N
O

T

P
o

p
C

o
u

n
t

Tr
e

e
P

o
p

C
o

u
n

t
Tr

e
e

A
N

D

N
O

T

0

1

Next Allocating Read Index: 11

Ex
ec

u
ti

o
n

Ti

m
e

T 0
0

1 2 30 1 2 30 Unit Idx

0 1 32 0 1 32

T 1 0 1 32 0 1 32

T 1
+1

T 3

0 2 0 4 52

T 2 0 2 0 4 52

T 2
+1 0 0 6 87

A. Read allocate
B. Exec. read 4&5

A. Read allocate
B. Exec. read 6&7
&8

0 0 6 87

4 5 76 8 6 97
A. Read allocate
B. Exec read 9

T 3
 +

1

A. Read allocate
B. Exec. read 0&1
&2&3

Exec. read
0&1&2&3 in batch

Unit 1&3 is Idle

Unit 1&3&2 is Idle

Exec. read
4&5&6&7 in batch

Read In Batch Our Scheduling Strategy

Unit 1&3 is done

Idle Busy Done

Unit 2 is done

T 0
0

T 1
T 1

+2
T 3

T 2
T 2

+3
T 3

 +
1

Unit Idx

Ex
ec

u
ti

o
n

Ti

m
e

Unit 0 is done

Fig. 5. Comparison of Read-in-Batch strategy and One-Cycle scheduling
strategy. (a) Read-in-Batch strategy. (b) One-Cycle scheduling strategy.

for inter-unit scheduling, and the switching context is used
for intra-unit scheduling. To summarize, our One-Cycle Read
Allocator and the switching context proposed in ERT are
orthogonal, and they can work together for seeding engines.

C. Extension Scheduler Design

Inefficiency of Current Design. The execution pattern of
the seed-extension phase is regular and compute-intensive, and
the most widely known structure is the systolic array [45],
[47], [60], [61], [67]. As shown in Fig. 7(a) and Fig. 7(b), the
query sequence is divided into three blocks of GCG, CAA,
and TGT, and the three bases of each block are placed in
three PEs, respectively. The reference sequence is loaded into
the PEs from the left. The PEs compute the alignment result,
and the computation results are stored in the SRAM cache
below. The final result is obtained using the trace-back logic
unit when all blocks are finished4.

Fig. 7(c) gives the execution flow of the matrix-fill step. The
computation of Block 0 needs to be completed first. In cycle 1,
the first element G of Block 0 compares with the first element
G of the reference sequence. In cycle 9, the first element G of
Block 0 completes the comparison with the whole reference
sequence. Since the third element G of Block 0 is delayed
by two cycles compared to the first element, the computation
of the whole block is completed at cycle 11. The remaining
two blocks are computed in the same form as Block 0, so
the computation cycle to complete the whole process is the
execution cycle of a single block multiplied by the number of
blocks. The whole process consumes 33 cycles.

Based on the above discussion, let R be the length of the
reference sequence, let Q be the length of the query sequence,

4Since the latency of the trace-back logic is constant for a specific query
and reference, irrelevant to the number of PEs, it is not discussed here.

1

1

1 0 0 0 0 0

1 1 1 1 1 0 0

11 1 0 1 1 0 1

1 1 0 1 1 0 1

P
o

p
C

o
u

n
t

A
N

D

N
O

T

P
o

p
C

o
u

n
t

Tr
e

e
P

o
p

C
o

u
n

t
Tr

e
e

A
N

D

N
O

T

unit_mark_table

Allocate Read
Calculate

A
N

D

P
o

p
C

o
u

n
t

Tr
ee

M
u

x read_offset

need_allocate

fifo_base_idx A
D

D

A
N

D

0x01

fifo_base_idx

0
x0

1

read_valid[i]

unit_
status

1
0
1
0

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

0
1
2
3

core_mark_table

core_status

core_status[i]

1:4 Arbiter

Reads

Seeding
Unit

One-Cycle
Read

Allocator

Find Min

Read SPM

Seeding Units

One-Cycle

allocate_read_offset

u
n

it
 id

x A
N

D

P
o

p
C

o
u

n
t

Tr
ee

M
u

x
read_offset

unit_mark_table[i]

unit_status
A

D
D

unit_status[i]

read_idx

A
D

D

read_offset

read_offset

read_offset

read_offset

read_idx

need_new_read

1

2
4

3

5

2 3

4
5

1

Fig. 6. The microarchitecture of the One-Cycle Read Allocator.

(a) (c)(b)

PE
0

PE
2

PE
3

Traceback Logic

G C G

Block 2
C A A
T G T

Cycle 1 Cycle 9 Cycle 11

Cycle 33

Q

R

Q

R

Q

R

Q

R

T G T A A C G C G
Query(Q)

G C G A T C C C G
Reference(R)

Block 0
Block 1

(9 + 3 - 1) × 3 = 33
Each Block

Cycle
Block

Number

Fig. 7. A runtime example of the well-known systolic array [45], [47], [60],
[61], [67]. (a) The query sequence and the reference sequence. (b) Common-
used hardware design of the systolic array. (c) Execution flow of running (a)
on (b).

0 25 50 75 100 125 150
0

25

50

75

100

125

150

175

Number of PEs

L
a
te

n
c
y

�9, 17	

0 25 50 75 100 125 150
0

1000

2000

3000

4000

5000

Number of PEs

L
a
te

n
c
y

�64, 127	

(a) (b)

R = Q = 9 R = Q = 64

Fig. 8. Latency of systolic array with different number of PEs.

and let P be the number of PEs. The latency L of the matrix-
fill process is

L = (R+ P − 1)×
⌈
Q

P

⌉
. (3)

As an example, Fig. 8 presents the execution latency of
the systolic array [45], [47], [60], [61], [67] with different
numbers of PEs for the cases of sequence lengths of 9 and
64. We can get three key observations from this figure. (1)
When the hit length and the number of PEs are close to each
other, the computation has the shortest latency. (2) A short hit
running on a large PE incurs high latency due to idle units,
and a long hit running on a small PE also incurs high latency
due to multiple iterations. (3) The latency of short hits running
on small PEs and long hits running on large PEs is not much
different from the shortest latency and can be chosen as the
sub-optimal solution.

Hybrid Units Strategy. To balance latency and resource
usage, we propose a Hybrid Units Strategy to handle the
different scales of the task. Suppose Fig. 9(a) shows the
distribution of hit lengths obtained by software execution,
and here we divide the data distribution into four intervals.
Fig. 9(b) shows that the conventional approach would use
moderately sized units to handle all tasks. Here we take the
number of PEs as 64 and take the number of units as four, and
thus the total number of PEs is 256. Our proposed approach
will design units with different numbers of PEs according
to the distribution of hits length. As shown in Fig. 9(c),
We design five PEs, two of which contain 16 PEs, and the
remaining three contain 32, 64, and 128 PEs, respectively.
The total number of PEs is still 256.

Fig. 9(d) presents the cycles required to execute the hits
(20, 40, 10, 65, 127) for both uniform and hybrid units. Since
only four units are available for the uniform units, only the
first four hits can be computed first at cycle 1. The execution
latency for different hits can be obtained by Formula 3. At
cycle 74, the third unit completes the computation of the hit
10 with the shortest latency, and the remaining hit 127 is
loaded at cycle 75. At cycle 84, the first unit completes the
computation of hit 20. The subsequent process follows this
procedure and takes 455 cycles to complete the computation
of all hits. In contrast, our strategy has more units than the
uniform units strategy, and all the hits can be loaded at once.
Furthermore, different computing units are customized for
different lengths of hits. The latency is universally lower than

that of the uniform units. Similarly, it requires 257 cycles
to complete the computation of all hits. Compared with the
uniform unit strategy, our strategy makes a better trade-off
between parallelism and latency with a reasonable scheduling
mechanism (detailed in Sec. IV-D).

The above analysis is based on Fig. 9(b) using four units,
each with 64 PEs. It can be achieved by assigning 51 PEs to
each unit, then the total number of units in Fig. 9(b) is also
five, and the PEs consumed are approximately the same as
in Fig. 9(c) (i.e., 255 vs. 256). Based on the long execution
latency problem in Formula 3, this allocating strategy still can
not outperform our hybrid approach.

Guideline for Assigning Hybrid Units Based on Hits
Distribution. Typically, we need to determine the number
of hybrid EUs in each class based on a hit distribution and
the total number of PEs. The hit distribution can be derived
from a standard dataset or the average of multiple datasets.
Empirically, the number of PEs for each class is preferentially
determined as a power of two for design simplicity. The class
of hybrid EUs is a hyperparameter, which is usually taken
as four. We explore the design space for this parameter in
Sec. V-E.

Suppose there are n classes of EUs and the number of PEs
in the i-th class is pi. For a given distribution of hit length,
we divide the entire region into n intervals according to the
value of pi, and then the summation is performed within the
interval, and the summation for each interval is noted as si.
For the i-th interval, pi is the optimal execution unit according
to Formula 3. Let the total number of PEs be given as N and
the number of EUs of the i-th class xi, we can derive the
following set of equations,

∑n
i=0 xi · pi = N

x0 : x1 : · · · : xn−1 = s0 : s1 : · · · : sn−1

xi ∈ Z, i ∈ [0, n− 1]
. (4)

By solving this set of equations, we can obtain the number
of class i-th EUs as

xi =
si ·N∑n−1

j=0 pj · sj
, i ∈ [0, n− 1]. (5)

Discussion of Other State-of-the-Art Seed-Extension
Accelerators. Although the analysis above is based on the
systolic-array-based designs [60], [61], our strategy also ap-
plies to other state-of-the-art studies.

GenASM [16] adopts a fixed number of PEs to align input
hits. The part exceeding the number of PEs will be computed
serially by iteration. GenAx [23] uses a fixed number of PEs
to align hits with different edit distances. The number of
edit distances exceeding the number of PEs is computed by
composing multiple tiles with a fixed number of PEs. Com-
pared with those designs, our approach fine-grained tuning the
scale of computing units according to the length of hits can
reduce resource wastage and computing latency. In addition,
our scheme is orthogonal to the above designs. SeedEx [24]
can handle input data of arbitrary length, but there still has
a trade-off between the execution band size and performance

(a) Hybrid UnitsHit Length Distribution
1-23 24-47 48-95 96-150

40%

20% 20% 20%

Uniform Units

PEs = 16x2 + 32x1 + 64x1 + 128x1 = 256PEs = 64x4 = 256

(d) Execution Flow

Cycle1 74

PE=16PE=16 PE=32PE=32

PE=64PE=64 PE=128PE=128

20 8320 83
40 10340 103
10 7310 73
65 25665 256

20 1020 10
40 3040 30

65 18365 183

75

20 920 9
40 2940 29

127 380127 380
65 18265 182

40 2040 20
127 371127 371
65 17365 173

84

127 351127 351
65 15365 153

104

127 198127 198

257 455

Cycle26

20 7020 70

40 14240 142

10 2510 25

65 25665 256

71 143 255 257

127 254127 254

20 4520 45

40 11740 117
65 23165 231

127 229127 229

40 7240 72
65 18665 186

127 184127 184

65 11465 114

127 112127 112

65 265 2

Load hit 20,
40, 10,65

Finish hit 10 Load hit 127 Finish hit 20 Finish hit 40 Finish hit 65 Finish hit 127

Load hit 20, 10,
40, 65, 128

Finish hit 10 Finish hit 20 Finish hit 40 Finish hit 128 Finish hit 65

1

(b) (c)

Uniform
Units

Execution

Hybrid
Units

Execution

Hybrid
Units

Execution

Legend Hit LatencyHit Latency

127
65
10
40
20

Need
Processed

Hits

Fig. 9. A toy example of the hybrid unit strategy versus the unified unit strategy. (a) An assumed hit length distribution. (b) The uniform units strategy. (c)
The hybrid units strategy. (d) The execution flow of (b) and (c).

for the banded Smith-Waterman algorithm [19]. Considering
the diversity of hits, using different scales of bands for hits
with different lengths can reduce the pressure of speculation-
and-test and thus provide higher iso-area throughput.

D. Coordinator Design

Hits Fragmentation Problem. Since the subsequent
scheduling request will read the next hits block with fixed
batch size and offset, the allocated failed hits5 will be kept
in Hits Buffer (cf. Fig. 10), which leads to a fragmentation
problem. This problem will result in many hits not being
allocated to EUs and cause the hits buffer to have less writable
space.

Solution to Hits Fragmentation. We first define the allo-
cated hits offset in the Processing Buffer (PB) (cf. Fig. 10) to
know where to read the hits in the subsequent scheduling. In
addition, to ensure the unprocessed hits of this scheduling can
be processed later, we place the unprocessed hits at the end
of the data batch and write them back to the original batch
location in PB. With these two strategies, the unprocessed hits
of this scheduling can be processed next time according to the
offset and batch size.

Hits Allocation Problem. There are two basic resource
allocation methods: (1) Allocating computing units in groups
with the same number of PEs guarantees that the different
groups do not interfere and that the optimal computing unit is
always assigned to the hit. However, once the number of hits is
more than idle resources, hits can not be allocated to resources,
which affects the scheduling efficiency. (2) Allocating all
computing units in one group ensures that all idle resources

5The allocated failed hits mean that these hits are not allocated to executable
EUs in the last scheduling. This frequently occurs since the length of hits can
not be predicted in advance.

are shared, making it easier to allocate hits to idle computing
units. Unfortunately, this approach is too aggressive and can
easily lead to short hits being executed by large computing
units, which will bring high execution latency.

Solution to Hits Allocation. We first group the EUs into
several groups according to its PEs numbers. Similarly, we also
divide the hits to be processed into several groups according
to the hit length, and the grouping threshold depends on the
grouping threshold of EUs. By using this strategy, adjacent
resources can be supplemented to ensure scheduling efficiency
when some specific resources are limited, and it also alleviates
the occurrence of excessive computing latency.

Dataflow and Hardware Design. Fig. 10 shows the
dataflow and hardware structure of the Coordinator. The Hits
Buffer triggers a switch operation when the Store Buffer (SB)
reaches a threshold (e.g., 75%). When the number of idle
EUs reaches a threshold (e.g., 15%), an allocation process
will be triggered to allocate hits in the PB to idle EUs. The
allocation process is a low-latency greedy allocation process
that allocates the optimal or sub-optimal EU for each hit.
Unallocated hits are left for the next allocation process. It has
the following nine steps. 1 Load the unprocessed hits from
the PB according to the current offset and constant batch size.
2 Compute the extension length of each hit, which is the

difference between the end coordinate and the start coordinate
of the read pos. 3 Sort the hits according to hit len. 4 Filter
the table into two parts according to whether the hit len is
greater than a split threshold. The hit len (7, 29, 40) will
be assigned to the upper group and hit Len 103 to the other
group. 5 The computing units with 16 PEs and 32 PEs are
grouped uniformly, and the computing units with 64 PEs and
128 PEs are grouped uniformly. 6 Assign the hit to the
optimal or near-optimal computing unit. 7 Merge the table of

142, 170
1, 40

110, 116
0, 102

read_pos

1
2

4
3

5

67

1, 1, 1
1, 0, 0
0, 1, 1
0, 0, 0
hit_idx

142, 170
1, 40

110, 116
0, 102

read_pos

6400, 6608
5901, 5940
4300, 4306
4090, 4102

ref_pos

0
0
0
0

dirty

-
-
-
-

unit_idx

The succeeding steps omit the
non-essential columns

o
ff

se
t

=
0

Bitonic Sorter

From Units
equipped with

16 or 32 PEs
offest = 3

-
-
-
-

hit_len

0
0
0
0

dirty

-
-
-
-

unit_idx

-
-
-
-

hit_len

0
0
0
0

dirty

-
-
-
-

unit_idx

29
40
7

103
hit_lenLength

Calculator

3
2
1
0

unit_idx

0
1
1
0

busy

2
1
3
0

unit_idx

1
1
0
0

busy

From Units
equipped with
64 or 128 PEs

0
-
-
-

dirty

-
-
-
-

unit_idx

103
-
-
-

hit_len

-
40
29
7

hit_len

-
0
1
1

dirty

-
-

0, 3
0, 0

unit_idx

103
-
-
-

hit_len

1
-
-
-

dirty

1, 0
-
-
-

unit_idx

PB

8

Send Allocation
Table to HUM

9

0
0
0
0

dirty

-
-
-
-

unit_idx

103
40
29
7

hit_len

-
0
0
0

dirty

-
-
-
-

unit_idx

-
40
29
7

hit_len

103
40
29
7

hit_len

1
0
1
1

dirty

1, 0
-

0, 3
0, 0

unit_idx

103
40
29
7

hit_len

1
0
1
1

dirty

1, 0
-

0, 3
0, 0

unit_idx

40
103
29
7

hit_len

0
1
1
1

dirty

-
1, 0
0, 3
0, 0

unit_idx

40
103
29
7

hit_len

0
1
1
1

dirty

-
1, 0
0, 3
0, 0

unit_idx

OR Array

SB

Hits (ping-ping) Buffer

48

Split
Array

Concat
Array

Concat
Array

Tide-up

Tide-up

Hits
From SUs

b
at

ch
_s

iz
e

 =
 4

OR Array

From
HUM

3
2
1
0

unit_idx

1
1
1
0

busy
Reverse Tide-up

0
3
1
2

unit_idx

0
1
1
1

busy

sp
lit

_t
h

re
sh

o
ld

A
llo

ca
te

Ju

d
ge

r

Trigger Signal
from Allocate

Trigger

Fig. 10. The data flow and hardware design of the Coordinator.

the completed allocation, and the invalid rows will be filtered
out. 8 Move the allocated hits to the top and the unallocated
hits to the bottom. 9 The allocation result is written back
to the PB, and the offset is adjusted to 3 to ensure that the
un-allocated hit of hit len 40 can be allocated next time.

V. EVALUATION RESULTS

A. Implementation of SUs and EUs

To measure the improvement of NvWa for throughput
speedup and power consumption, we instantiate the SUs and
EUs using two prior designs [60], [65] (noted as SUs+EUs in
the following paper).

The SUs design is based on a bitwise and vectorized
implementation of the FM-index search algorithm [65], and
the FM-index interval is set to 128. The EUs design is
modified from the open-source systolic array of Darwin [60].
The configuration of EUs is from the statistics of a most
common dataset (i.e., NA12878 [2]), which guarantees a stable
performance improvement even when the datasets are changed.
As shown in Table I, we fix the number of SUs as 128
considering the previous work [60], [61], which can consume
sufficient input data. We fix the number of PEs as 2880 since
the amount of resources of EUs accounts for most of NvWa,
and obtain the number of EUs for each class by solving
Formula 5. As shown in Table I, the total number of EUs
is 70, where the numbers of EUs for 16 PEs, 32P Es, 64 PEs
and 128 PEs are 28, 20, 16, and 6, respectively.

Moreover, our algorithms and parameters of SUs and EUs
are faithful to de facto standard software BWA-MEM (0.7.17-
r1198-dirty) [14], [38], [43], [46], [53], [66], e.g., the scoring
scheme, the affine gap penalty, and the trace-back support.
This ensures NvWa has no loss of accuracy.

B. Methodology

We use the following strategies and tools to measure the
performance and power consumption of NvWa.

Architecture Simulator. We build a cycle-accurate and
execution-driven simulator using Python to model the micro-
architectural behaviors and measure execution time in the
number of cycles. We integrate our simulator with Ramula-
tor [35] using SWIG [3] to simulate the behaviors of memory
accesses.

CAD Tools. We implement each module of NvWa in
Chisel3 [11] and generate Verilog. We synthesize each module
using Synopsys Design Compiler with the SIMC 14 nm
standard VT library to measure each module’s area and critical
path delay and estimate the power using Synopsys PrimeTime
PX. The critical path delay is 0.9 ns, putting the NvWa
comfortably at 1 GHz clock frequency.

Memory Measurements. We use Cacti 7.0 [12] to evaluate
the area, power, and access latency of the on-chip scratchpad
memory. Since Cacti 7.0 only supports down to 32 nm tech-
nology, we apply four different scaling factors as previously
described in [52], [63] to convert them to 14 nm technology.
The energy of HBM 1.0 is estimated at 7pJ/bit, as shown
in [51], [68].

Benchmark Datasets. We evaluate NvWa using the major
version of the human genome assembly, GRCh38 [4]. We use
chromosomes 1-22, X, and Y by filtering the mitochondrial
genomes, unmapped contigs, and unlocalized contigs. The
dataset is the human genome NA12878 [2] (single-ended
ERR194147 1.fastq), consisting of 787,265,109 reads of 101
base pairs (bp), and from which we randomly sampled 200,000
reads.

Baseline Platform. To compare the performance of NvWa
with state-of-the-art studies, we evaluate the CPU baseline
BWA-MEM [38] and the GPU baseline GASAL2 [5] on a
Linux server equipped with two Intel(R) Xeon(R) E5-2620
v4 CPUs, 128 GB DDR4 memory, and an NVIDIA A100
GPU. Table I shows the system configurations for the above
implementations.

We evaluate the performance of GenAx, GenCache, SeedEx,

and ERT using data reported by the original work [23],
[24], [49], [57]. By specifying the same benchmark dataset
(NA12878 [2]), we can fairly compare the performance of
NvWa with those studies.

TABLE I
SYSTEM CONFIGURATIONS OF CPUS, GPUS, AND NVWA.

BWA-MEM GASAL2 NvWa
Compute

Unit
16 cores @

2.10GHz
6912 cores @

1.41GHz
128 SUs and 70 EUs @

1 GHz

On-chip
Memory 20MB 40MB 512 KB (SUs), 20 MB (EUs),

and 150 KB (Coordinator)

Off-chip
Memory

136.5GB/s
DDR4

1555GB/s
HBM v2.0

256GB/s
HBM v1.0

C. Overall Results

Throughput. Fig. 11 shows the throughput of NvWa ap-
plied to the read alignment pipeline against various base-
lines. The throughput of NvWa is 49150 K reads/sec.
NvWa achieves 493×, 200×, 151×, 12.11×, and 2.30×
speedup against CPU-BWA-MEM [36], GPU-GASAL2 [5],
FPGA-ERT+SeedEx [24], [57], ASIC-GenAx [23], and PIM-
GenCache [49], respectively. For a fair comparison and con-
sidering the power consumption in the next paragraph, the
throughput per Watt of NvWa is 52.62× of GenAx, and
13.50× of GenCache.

Compared to CPUs and GPUs, NvWa customizes SUs and
EUs and provides much higher parallelism than CPUs and
GPUs, and NvWa eliminates complex software and hardware
stacks. Compared to FPGAs, NvWa provides a higher clock
frequency, adopts efficient hardware schedulers, and avoids
high hardware and software switching overhead. Compared
to ASICs, only the design of computing components (i.e.,
SUs+EUs) is inferior to GenAx and GenCache, since they
use modified hardware-friendly algorithms, such as the Hash-
based search algorithm for the seeding phase. To this end,
NvWa achieves low latency resource allocation through the
One-Cycle Read Allocator and provides lower computing
latency and higher parallelism for EUs through the Coordi-
nator and the Hybrid Units Strategy. The Coordinator design
effectively prevents system blocking and starvation. These
strategies achieve better throughput than GenAx and Gen-
Cache.

Since the design of SUs+EUs only performs bit vectoriza-
tion [65] for the seeding phase and systolic array [60] for
the seed-extension phase, the performance is only 88.79% of
GenAx and 16.93% of GenCache. By incorporating the NvWa
optimization, the throughput improvement is 12.11× higher
than GenAx and 2.30× higher than GenCache. In detail, the
Hybrid Units Strategy, the One-Cycle Read Allocator, and
the Hits Allocator provide 3.32×, 1.73×, and 2.38× speedup,
respectively.

Power Consumption. Table II shows the detailed power
consumption of NvWa. The total area of NvWa is 27.009
mm2, and the total power consumption is 5.754 W. When

100

101

102

103

104

105

4
9

1
5

0
.0

2
0

6
8

7
.0

1
1

9
5

1
.0

3
6

0
3

.0

2
1

2
7

7
.0

4
0

5
8

.0

3
2

5
.0

2
4

6
.0

9
9

.7

3.32X
1.73X

2.38X

13.64X

T
h

ro
u

g
h

p
u

t(
K

re
a

d
s

/s
e

c
)

CPU-BWA-MEM(t=16)

GPU-GASAL2

FPGA-ERT+SeedEx

ASIC-GenAx

PIM-GenCache

ASIC-SUs+EUs

ASIC-SUs+EUs + HUS

ASIC-SUs+EUs + OCRA
+ HUS

ASIC-NvWa (SUs+EUs +
OCRA + HUS + HA)

Fig. 11. Throughput comparison of NvWa to the state-of-the-art CPU [36],
GPU [5], FPGA [24], [57], and ASICs [23], [49]. HUS denotes the Hybrid
Units Strategy, OCRA denotes the One-Cycle Read Allocator, and HA denotes
the Hits Allocator.

the HBM 1.0 is considered, the total power consumption is
7.685 W. The computing units (i.e., SUs and EUs) dominate
the area and power consumption, accounting for 94.15% of the
area and 86.61% of the power consumption. In contrast, the
scheduling units have an area of only 1.58 mm2 (5.84%) and
a power consumption of only 0.77 W (13.38%). Compared to
16-threaded BWA-MEM, GASAL2, GenAx, and GenCache,
NvWa achieves 14.21×, 5.60×, 4.34×, and 5.85× energy
reductions, respectively6. Compared to CPU and GPU plat-
forms with software and hardware stack switching and generic
inefficient computing components, the custom hardware logic
of NvWa is the main reason for its low power consumption.
In contrast, the high throughput design used by GenAx and
GenCache requires a large amount of SRAMs to cache data,
which results in significant power consumption. NvWa em-
ploys resource-efficient computing units and improves system
throughput with a lightweight scheduler, making NvWa the
most energy-efficient accelerator so far.

TABLE II
AREA AND POWER BREAKDOWN OF INDIVIDUAL COMPONENTS IN NVWA.

Module Category Area(mm2) Power(W)

SUs1 Logic 0.5 0.36

Table SRAM 2.16 0.71

EUs Logic 1.62 0.30

Table SRAM 21.15 3.614

Seeding Scheduler SPM 0.13 0.04

Logic 0.1 0.072

Extension Scheduler Table SRAM 0.065 0.021

Logic 0.23 0.165

Coordinator SRAM Buffer 0.782 0.257

Logic 0.273 0.215

Total N/A 27.009 5.754
1 Considering that SUs are bounded by memory, we use the LFMapBit

architecture in [65] since it delivers sufficient throughput for our
system.

6Since GenAx and GenCache do not consider the energy of memory, NvWa
uses 5.693 W to compare power consumption with them.

0 10000 20000 30000 40000 50000
0

50

100

Cycles

U
ti

li
z
a
ti

o
n

(%
)

0 10000 20000 30000 40000 50000
0

50

100

Cycles

U
ti

li
z
a
ti

o
n

(%
)

16 32 64 128
0

2000

4000

6000

8000

943 816
1443

110

6734

1398
1904

778

Units with different PEs

C
o

u
n

t

Allocate Correct Allocate Wrong

0 2× 106 4× 106 6× 106 8× 106 1× 107

0

50

100

Cycles

U
ti

li
z
a
ti

o
n

(%
)

0 2× 106 4× 106 6× 106 8× 106 1× 107

0

50

100

Cycles

U
ti

li
z
a
ti

o
n

(%
)

16 32 64 128
0

5000

10000

15000

0 0

12079

00 0

2047

0

Units with different PEs

C
o

u
n

t

Allocate Correct Allocate Wrong

The utilization of SUs

The utilization of EUs

The hits allocation of EUs

The utilization of SUs

The utilization of EUs

The hits allocation of EUs

(b)

(d)

(f)

(a)

(c)

(e)

Fig. 12. Resource utilization improvements and comparisons. (a), (c), and
(e) are the execution breakdown of NvWa. (b), (d), and (f) is the execution
breakdown of SUs+EUs.

D. Resource Utilization and Optimization Analysis

Fig. 12 provides the resource utilization of key components
related to the performance of NvWa, and the tested data here
is 4000 reads of 101bp for better representation.

Fig. 12(a) and Fig. 12(b) show the resource utilization
of SUs. The whole procedure is divided into loading time,
running time, and emptying time. The loading time is only
one cycle for our design, the average resource utilization of
the running time is 97.1%, and the emptying time will account
for a smaller proportion as the task size increases. The design
of SUs+EUs employs the Read in Batch strategy, and such a
coarse-grained approach fails to replenish data promptly for
SUs that are idle after completing the current task, resulting
in the utilization of only 23.51%.

As shown in Fig. 12(c), the loading time of EUs lags for
some time since the PB sends bits to the EUs only after the
buffer switch of stored bits is completed for the first time. The
average resource utilization for the whole process is 85.36%.
In addition, there are three spikes with utilization below 50%
due to the random nature of the input data, and those last for a
shorter period of cycles and do not significantly affect system
performance. The design of SUs+EUs uses uniform EUs,
which can not achieve optimal iso-area latency for different
lengths of hits. As shown in Fig. 12(d), the utilization of EUs
fluctuates terribly, with average utilization of only 32.31%.

Fig. 12(e) and Fig. 12(f) reflect whether each hit is correctly
assigned to the optimal computing unit. 87.7% of the short but

most numerous hits are correctly assigned to the computing
unit of 16 PEs, and 87.6% of the long but less numerous hits
are correctly assigned to the computing unit of 128 PEs. The
percentage of units with 32 PEs and 64 PEs that are correctly
allocated is lower, at 64.1% and 56.9%, respectively. Since the
amount of this part is relatively small, which has little impact
on the performance. Without using our strategy, only 14.5% of
hits are correctly allocated, which causes low iso-area latency
of EUs. More generally, based on the long execution latency
problem reflected in Formula 3, using only a single scale of
units (e.g., 16, 32, 64, 128) can not outperform our strategy.

E. Design Space Exploration

256 512 1024 2048 4096
0

20

40

60

80

100

Buffer Depth

P
e

rc
e
n

t
(%

)

Throughput (normalized to
buffer depth 1024)

Utilization Rate of SUs

Utilization Rate of EUs

� Best Choice

1 2 4 8 16
0

2× 104

4× 104

6× 104

0.2

0.4

0.6

Interval Number

T
h

ro
u

g
h

p
u

t
(k

re
a

d
s

/s
) C

o
o

rd
in

a
to

r’s
P

o
w

e
r

(W
a

tt)

Throughput
 (k reads/s)

Power of
HS
(Watt)

� Best Choice

(a) (b)

Fig. 13. Design space exploration. (a) The impact of different buffer depths
on throughput, the utilization of SUs, and the utilization of EUs. (b) The
impact of different intervals on throughput and the power consumption of the
Coordinator.

Hits Buffer Depth. Fig. 13(a) demonstrates how the depth
of the Hits Buffer affects the throughput, the average utiliza-
tion of SUs, and the average utilization of EUs, respectively.
When the buffer is small, the system will be more sensitive
to the input data, and the system will be more susceptible to
blocking or starving. When the buffer is in the blocking state,
the SUs and EUs will move into the suspending state. And
when the buffer is in the starving state, the EUs will enter
the idle state. Both of these states eventually harm the system
throughput. When the buffer is large, the time of the first buffer
switch will be delayed, which is equivalent to postponing
the time when EUs start running, and it affects the average
utilization of EUs. The best result is achieved when the buffer
depth is 1024, making a good trade-off between resource usage
and system performance.

Interval Number. Fig. 13(b) shows the impact of the
number of intervals on throughput and power consumption. A
power of two is usually taken as the number of intervals for
design simplicity. More intervals will generate more classes
of hybrid EUs, and the number of each class is determined
by solving Formula 5. For throughput, more intervals will
provide better EUs for different lengths of hits, which can
increase the throughput of the whole system. For the power
consumption of the Coordinator, the buffer will dominate
its power consumption when the interval is small, and the
complex allocation logic will dominate its power consumption
when the interval is large. We take an interval of four in
our implementation as it provides the best trade-off between
throughput and power consumption.

F. Sensitivity Analysis about Multiple Datasets

We used DWGSIM [31] to generate six reads datasets of
NCBI reference genome [1] to evaluate the sensitivity of
NvWa to other datasets. Fig. 14(a) shows the throughput
speedup of NvWa on the short reads datasets versus the 16-
threads CPU baseline. NvWa can achieve a speedup of 285.6×
∼ 357× on other datasets. This reflects the generality of
our design. Fig. 14(b) illustrates the distribution of different
short reads datasets under the four intervals. Since the error
rates and algorithms for the second-generation sequencing are
essentially stable, the different datasets have a roughly similar
distribution to the NA12878 dataset. This is why NvWa can
achieve stable performance on multiple datasets.

Fig. 14(a) also shows the throughput speedup on the long
read datasets. Our design can still be applied to the long reads
datasets by using the iterative scheme of GACT [60], [61].
Since the hit length distribution of long reads is different from
short reads, the throughput speedup is 259× ∼ 272×. By
adjusting the configuration according to the hit distribution of
long reads, we argue that NvWa can still achieve considerable
speedups on long reads datasets.

H. s. C. h. Z. h. C. d. V. e. H. s. C. e.
0

200

400

2
5

9
.3

2
7

2
.0

3
0

3
.5

3
5

7
.0

3
3

1
.0

3
0

9
.03
8

4
.0

S
p

e
e
d

u
p

v
s
.

C
P

U
b

a
s
e
li
n

e

Short Reads Long Reads

0

50

100

H
it

s
D

is
tr

ib
u

ti
o

n
(%

)

Interval 1

Interval 2

Interval 3

Interval 0

H. s. C. h. Z. h. C. d. V. e.

(a) (b)

Fig. 14. (a) The performance of NvWa on multiple short and long reads
datasets. H. s. denotes the Homo sapiens, C. h. denotes the Clitarchus
hookeri, Z. h. denotes the Zapus hudsonius, C. d. denotes the Camelus
dromedarius, V. e. denotes the Venustaconcha ellipsiformis, and C. e. denotes
the Caenorhabditis elegans, respectively. The short reads datasets of H. s. still
use the NA12878 dataset [2]. (b) The hits distribution percentage of multiple
short reads datasets with four intervals.

VI. DISCUSSION

Flexibility. The seed-and-extend paradigm is widely used in
the 2nd/3rd-generation read alignment software [9], [30], [36],
[39], [40], [48], [54]. The multifarious algorithms can benefit
from NvWa if they follow the defined unified interface. As
shown in Table III, the interface is composed of two parts.
The data interface specifies the format standards for input and
output to be followed by SUs and EUs. The control interface
defines the states that the SU and EU need to support.

Long Reads. While our work focuses on short reads,
the scalable design of NvWa also applies to long reads (≥
1Kbp). Unlike the seed-and-extend paradigm used in short
reads aligners [9], [38], [62], a handful of existing long reads
aligners [39], [40] take the seed-and-chain-then-fill paradigm.
It is expected that the seed-and-chain-then-fill paradigm will
have the same execution diversity problem as shown in Sec. III
since each input read has different characteristics.

TABLE III
THE UNIFIED INTERFACE DEFINITIONS OF NVWA

Interface Type Unit Type Direction Signal Definition

Data
SUs Input [read idx, read metadata]

Output [read idx, hit idx, direction, read pos,
ref pos] (noted as [sus output])

EUs Input [sus output]

Output [sus output, alignment result]

Control SUs N/A [idle, busy, stop]

EUs N/A [idle, busy, stop, pe number]

VII. RELATED WORK

Accelerators for the Seeding or the Seed-Extension
Phase. A large body of previous studies focused on accelerat-
ing the seeding phase using GPU [25], [59], FPGA [6], [10],
[18], [21], [26], [64], ASIC [33], [57], [60], [61], [65], and
Near-data processing (NDP) [32], [49], [69]. Two acceleration
categories are usually employed to solve the random memory
access problem of the seeding phase, e.g., using emerging
device properties to accelerate the original algorithm [32], [69]
and design a specialized algorithm-specific architecture [23],
[33], [57], [60], [61]. A plethora of studies focused on
accelerating the seed-extension phase using GPU [5], [25],
FPGA [13], [20], [27], [29], [42], [44], [58], ASIC [23], [24],
[47], [60], [61], and NDP [15], [34]. Similar to the seeding
phase, these designs are divided into two categories, e.g.,
accelerating traditional dynamic programming algorithms [24],
[60], [61] and accelerating novel matching algorithms [16],
[23].

While these studies effectively address the memory-bound
problem in the seeding phase and the compute-bound problem
in the seed-extension phase, they did not fully consider the
diversity problem. NvWa employs a scheduling approach that
provides higher resource utilization for each unit with varying
execution times.

Scheduling in the Sequence Alignment Accelerators.
Previous work noticed the need for scheduling in the seed-and-
extend paradigm. Darwin [60] and Darwin-WGA [61] used
software API and data duplication to provide fine-grained con-
trol of the workloads on SUs and EUs. SeedEx [24] extended
the multi-threading model in BWA-MEM to provide separate
workers, which can run concurrently and communicate seed-
extension accelerators over PCIe. ERT [57] utilized switch
contexts to saturate memory bandwidth and employed the
producer-consumer model to facilitate load-balancing in FPGA
by adjusting the number of FPGA threads.

However, these studies can not substantially address the
diversity problem mentioned in this paper. In our paper,
we proposed the Seeding Scheduler to address the resource
competition problem in the centralized buffer mechanism [23]
and supply data for each idle SUs in only one cycle. And
we proposed the Extension Scheduler and the Coordinator to
control the hits and EUs at a fine-grained level, providing high
parallelism and low latency for the seed-extension phase.

VIII. CONCLUSION

Sequence alignment is an essential step in genome data anal-
ysis. Many hardware efforts aimed to improve the execution
latency in the workflow. To address the execution diversity
problem and improve parallelism and resource utilization,
we propose NvWa, which contains three novel scheduling
mechanisms and corresponding architecture that target the
seeding phase, the seed-extension phase, and the interaction,
respectively. Moreover, NvWa has no loss of accuracy and is
orthogonal to previous work. Experimental results show that
NvWa can achieve 493×, 200×, 12.11×, 2.30× speedup and
14.21×, 5.60×, 4.34×, 5.85× energy reduction when com-
pared with a 16-thread CPU baseline, an NVIDIA A100 GPU
baseline, and two state-of-the-art accelerators, respectively.

IX. ACKNOWLEDGEMENTS

This work is supported by the National Key R&D Program
of China under Grant No. 2022YFB4500403, the NSF of
China under Grant No. T2125013 and 62202454, and the
China National Postdoctoral Program for Innovative Talents
under Grant No. BX2021320. We thank the anonymous re-
viewers who made suggestions for this paper. We are also
inspired by Prof. Ninghui Sun’s idea of loose coupling.

REFERENCES

[1] “Genome,” https://www.ncbi.nlm.nih.gov/data-hub/genome/.
[2] “NA12878 — IGSR sample,” https://www.internationalgenome.org/data-

portal/sample/NA12878.
[3] “Simplified Wrapper and Interface Generator,” https://www.swig.org/.
[4] “Genome Reference Consortium Human Build 38 patch

release 13 (GRCh38.p13) - Genome Assembly NCBI,”
https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.39#, 2021.

[5] N. Ahmed, J. Lévy, S. Ren, H. Mushtaq, K. Bertels, and Z. Al-Ars,
“GASAL2: A GPU accelerated sequence alignment library for high-
throughput NGS data,” BMC Bioinformatics, vol. 20, no. 1, p. 520,
Dec. 2019.

[6] N. Ahmed, V.-M. Sima, E. Houtgast, K. Bertels, and Z. Al-Ars,
“Heterogeneous hardware/software acceleration of the BWA-MEM DNA
alignment algorithm,” in ICCAD, 2015, p. 7.

[7] M. Alser, S. Ghose, C. Alkan, and O. Mutlu, “Accelerating Genome
Analysis: A Primer on an Ongoing Journey,” IEEE Micro, p. 12, 2020.

[8] M. Alser, J. Rotman, D. Deshpande, K. Taraszka, H. Shi, P. I. Baykal,
H. T. Yang, V. Xue, S. Knyazev, B. D. Singer, B. Balliu, D. Koslicki,
P. Skums, A. Zelikovsky, C. Alkan, O. Mutlu, and S. Mangul, “Tech-
nology dictates algorithms: Recent developments in read alignment,”
Genome Biology, vol. 22, no. 1, p. 249, Aug. 2021.

[9] S. F. AltschuP, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic Local Alignment Search Tool,” Journal of Molecular Biology,
p. 8, 1990.

[10] J. Arram, T. Kaplan, W. Luk, and P. Jiang, “Leveraging FPGAs for
Accelerating Short Read Alignment,” IEEE/ACM Trans. Comput. Biol.
and Bioinf., vol. 14, no. 3, pp. 668–677, May 2017.

[11] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
Scala embedded language,” in DAC. San Francisco, California: ACM
Press, 2012, p. 1216.

[12] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories,” ACM Trans. Archit. Code Optim.,
vol. 14, no. 2, pp. 1–25, Jul. 2017.

[13] S. S. Banerjee, M. El-Hadedy, J. B. Lim, Z. T. Kalbarczyk, D. Chen,
S. S. Lumetta, and R. K. Iyer, “ASAP: Accelerated Short-Read Align-
ment on Programmable Hardware,” IEEE Transactions on Computers,
vol. 68, no. 3, p. 16, 2019.

[14] S. Byma, S. Whitlock, L. Flueratoru, E. Tseng, C. Kozyrakis,
E. Bugnion, and J. Larus, “Persona: A High-Performance Bioinformatics
Framework,” in USENIX ATC, 2017, pp. 153–165.

[15] D. S. Cali, “Accelerating Genome Sequence Analysis via Efficient
Hardware/Algorithm Co-Design,” Ph.D. dissertation, Carnegie Mellon
University, Nov. 2021.

[16] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S.
Kim, R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand,
A. Nori, A. Scibisz, S. Subramoney, C. Alkan, S. Ghose, and
O. Mutlu, “GenASM: A High-Performance, Low-Power Approximate
String Matching Acceleration Framework for Genome Sequence Anal-
ysis,” in MICRO. IEEE/ACM, 2020.

[17] D. S. Cali, K. Kanellopoulos, J. Lindegger, Z. Bingöl, G. S. Kalsi,
Z. Zuo, C. Firtina, M. B. Cavlak, J. Kim, N. M. Ghiasi, G. Singh,
J. Gómez-Luna, N. A. Alserr, M. Alser, S. Subramoney, C. Alkan,
S. Ghose, and O. Mutlu, “SeGraM: A universal hardware accelerator
for genomic sequence-to-graph and sequence-to-sequence mapping,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association for
Computing Machinery, Jun. 2022, pp. 638–655.

[18] M.-C. F. Chang, Y.-T. Chen, J. Cong, P.-T. Huang, C.-L. Kuo, and C. H.
Yu, “The SMEM Seeding Acceleration for DNA Sequence Alignment,”
in FCCM. Washington, DC, USA: IEEE, May 2016, pp. 32–39.

[19] K.-M. Chao, W. R. Pearson, and W. Miller, “Aligning two sequences
within a specified diagonal band,” Bioinformatics, vol. 8, no. 5, pp. 481–
487, 1992.

[20] Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A Novel High-Throughput
Acceleration Engine for Read Alignment,” in FCCM. IEEE, May 2015,
pp. 199–202.

[21] J. Cong, L. Guo, P.-T. Huang, P. Wei, and T. Yu, “SMEM++: A Pipelined
and Time-Multiplexed SMEM Seeding Accelerator for Genome Se-
quencing,” in FPL. Dublin, Ireland: IEEE, Aug. 2018, pp. 210–2104.

[22] P. Ferragina and G. Manzini, “Opportunistic data structures with appli-
cations,” in FOCS. IEEE, 2000, pp. 390–398.

[23] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw,
and S. Narayanasamy, “GenAx: A Genome Sequencing Accelerator,” in
ISCA. Los Angeles, CA: ACM/IEEE, Jun. 2018, pp. 69–82.

[24] D. Fujiki, S. Wu, N. Ozog, K. Goliya, D. Blaauw, S. Narayanasamy,
and R. Das, “SeedEx: A Genome Sequencing Accelerator for Optimal
Alignments in Subminimal Space,” in MICRO. Athens, Greece:
IEEE/ACM, 2020, pp. 937–950.

[25] S. D. Goenka, Y. Turakhia, B. Paten, and M. Horowitz, “SegAlign: A
Scalable GPU-Based Whole Genome Aligner,” in SC, 2020, p. 13.

[26] L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware Acceleration
of Long Read Pairwise Overlapping in Genome Sequencing: A Race
Between FPGA and GPU,” in FCCM. San Diego, CA, USA: IEEE,
Apr. 2019, pp. 127–135.

[27] X. Guo, H. Wang, and V. Devabhaktuni, “A Systolic Array-Based FPGA
Parallel Architecture for the BLAST Algorithm,” ISRN Bioinformatics,
vol. 2012, pp. 1–11, 2012.

[28] T. J. Ham, D. Bruns-Smith, B. Sweeney, Y. Lee, S. H. Seo, U. G.
Song, Y. H. Oh, K. Asanovic, J. W. Lee, and L. W. Wills, “Genesis:
A Hardware Acceleration Framework for Genomic Data Analysis,” in
ISCA. Los Angeles, CA: ACM/IEEE, 2020.

[29] B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Cham-
berlain, “A Banded Smith-Waterman FPGA Accelerator for Mercury
BLASTP,” in FPL, Aug. 2007, pp. 765–769.

[30] R. S. Harris, “Improved Pairwise Alignmnet of Genomic DNA,” Ph.D.
dissertation, The Pennsylvania State University, 2007.

[31] N. Homer, “Nh13/DWGSIM,” Mar. 2021.
[32] W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, “MEDAL: Scalable

DIMM based Near Data Processing Accelerator for DNA Seeding
Algorithm,” in MICRO. Columbus OH USA: IEEE/ACM, Oct. 2019,
pp. 587–599.

[33] L. Jiang and F. Zokaee, “EXMA: A Genomics Accelerator for Exact-
Matching,” in HPCA. IEEE, 2021.

[34] R. Kaplan, L. Yavits, R. Ginosar, and U. Weiser, “A Resistive CAM
Processing-in-Storage Architecture for DNA Sequence Alignment,”
IEEE Micro, vol. 37, no. 4, pp. 20–28, 2017.

[35] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45–49, Jan. 2016.

[36] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows-Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–
1760, Jul. 2009.

[37] H. Li and N. Homer, “A survey of sequence alignment algorithms for
next-generation sequencing,” Briefings in Bioinformatics, vol. 11, no. 5,
pp. 473–483, Sep. 2010.

[38] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,” arXiv:1303.3997 [q-bio], May 2013.

[39] H. Li, “Minimap and miniasm: Fast mapping and de novo assembly for
noisy long sequences,” Bioinformatics, vol. 32, no. 14, pp. 2103–2110,
Jul. 2016.

[40] H. Li, “Minimap2: Pairwise alignment for nucleotide sequences,” Bioin-
formatics, p. 7, 2018.

[41] H. Li and R. Durbin, “Fast and accurate long-read alignment with
Burrows–Wheeler transform,” Bioinformatics, vol. 26, no. 5, pp. 589–
595, Mar. 2010.

[42] I. T. Li, W. Shum, and K. Truong, “160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array (FPGA),”
BMC Bioinformatics, vol. 8, no. 1, p. 185, Jun. 2007.

[43] X. Li, G. Tan, B. Wang, and N. Sun, “High-performance genomic
analysis framework with in-memory computing,” in PPoPP. Vienna,
Austria: ACM Press, 2018, pp. 317–328.

[44] Y.-L. Liao, Y.-C. Li, N.-C. Chen, and Y.-C. Lu, “Adaptively Banded
Smith-Waterman Algorithm for Long Reads and Its Hardware Acceler-
ator,” in ASAP. Milan: IEEE, Jul. 2018, pp. 1–9.

[45] R. J. Lipton and D. P. Lopresti, Comparing Long Strings on a Short
Systolic Array. Princeton University, Department of Computer Science,
1986.

[46] M. Lo, Z. Fang, J. Wang, P. Zhou, M.-C. F. Chang, and J. Cong,
“Algorithm-Hardware Co-design for BQSR Acceleration in Genome
Analysis ToolKit,” in FCCM. Fayetteville, AR, USA: IEEE, May 2020,
pp. 157–166.

[47] A. Madhavan, T. Sherwood, and D. Strukov, “Race Logic: A Hard-
ware Acceleration for Dynamic Programming Algorithms,” in ISCA.
ACM/IEEE, 2014, p. 12.

[48] J. Marić, I. Sović, K. Križanović, N. Nagarajan, and M. Šikić,
“Graphmap2 - splice-aware RNA-seq mapper for long reads,” Bioin-
formatics, Preprint, Jul. 2019.

[49] A. Nag, C. N. Ramachandra, R. Balasubramonian, R. Stutsman, E. Gi-
acomin, H. Kambalasubramanyam, and P.-E. Gaillardon, “GenCache:
Leveraging In-Cache Operators for Efficient Sequence Alignment,” in
MICRO. Columbus OH USA: ACM, Oct. 2019, pp. 334–346.

[50] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[51] M. O’Connor, “Highlights of the high-bandwidth memory (hbm) stan-
dard,” 2014.

[52] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns,
and O. Ozturk, “Energy Efficient Architecture for Graph Analytics
Accelerators,” in ISCA, 2016, p. 12.

[53] A. Prabhakaran, B. Shifaw, M. Naik, and P. Narvaez, “Infrastructure for
Deploying GATK Best Practices Pipeline,” Intel, Tech. Rep., 2015.

[54] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke,
“Reducing storage requirements for biological sequence comparison,”
Bioinformatics, vol. 20, no. 18, pp. 3363–3369, Dec. 2004.

[55] M. Schmidt, K. Heese, and A. Kutzner, “Accurate high throughput
alignment via line sweep-based seed processing,” Nat Commun, vol. 10,
no. 1, p. 1939, Dec. 2019.

[56] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–
197, Mar. 1981.

[57] A. Subramaniyan, J. Wadden, K. Goliya, N. Ozog, X. Wu,
S. Narayanasamy, D. Blaauw, and R. Das, “Accelerated Seeding for
Genome Sequence Alignment with Enumerated Radix Trees,” in ISCA.
ACM/IEEE, 2021.

[58] W. Tang, W. Wang, B. Duan, C. Zhang, G. Tan, P. Zhang, and N. Sun,
“Accelerating Millions of Short Reads Mapping on a Heterogeneous
Architecture with FPGA Accelerator,” in FCCM, 2012, p. 4.

[59] J. S. Torres, I. B. Espert, and I. M. Castello, “Using GPUs for the Exact
Alignment of Short-Read Genetic Sequences by Means of the Burrows-
Wheeler Transform,” IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics, vol. 9, no. 4, p. 12, 2012.

[60] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A Genomics
Co-processor Provides up to 15,000X Acceleration on Long Read

Assembly,” in ASPLOS. Williamsburg, VA, USA: ACM, 2018, pp.
199–213.

[61] Y. Turakhia, S. D. Goenka, G. Bejerano, and W. J. Dally, “Darwin-
WGA: A Co-processor Provides Increased Sensitivity in Whole Genome
Alignments with High Speedup,” in HPCA. Washington, DC, USA:
IEEE, Feb. 2019, pp. 359–372.

[62] M. Vasimuddin, S. Misra, H. Li, and S. Aluru, “Efficient Architecture-
Aware Acceleration of BWA-MEM for Multicore Systems,” in 2019
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2019, pp. 314–324.

[63] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, S. W. Keckler,
and W. J. Dally, “Scaling the Power Wall: A Path to Exascale,” in SC.
New Orleans, LA, USA: IEEE, Nov. 2014, pp. 830–841.

[64] H. M. Waidyasooriya and M. Hariyama, “Hardware-Acceleration of
Short-Read Alignment Based on the Burrows-Wheeler Transform,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1358–1372, May
2016.

[65] Y. Wang, X. Li, D. Zang, G. Tan, and N. Sun, “Accelerating FM-index
Search for Genomic Data Processing,” in ICPP. Eugene, OR, USA:
ACM, 2018, pp. 1–12.

[66] L. Wu, D. Bruns-Smith, F. A. Nothaft, Q. Huang, S. Karandikar, J. Le,
A. Lin, H. Mao, B. Sweeney, K. Asanovic, D. A. Patterson, and A. D.
Joseph, “FPGA Accelerated INDEL Realignment in the Cloud,” in
HPCA. Washington, DC, USA: IEEE, Feb. 2019, pp. 277–290.

[67] Y.-C. Wu, Y.-L. Chen, C.-H. Yang, C.-H. Lee, C.-Y. Yu, N.-S. Chang, L.-
C. Chen, J.-R. Chang, C.-P. Lin, H.-L. Chen, C.-S. Chen, J.-H. Hung,
and C.-H. Yang, “21.1 A Fully Integrated Genetic Variant Discovery
SoC for Next-Generation Sequencing,” in ISSCC, 2020, pp. 322–324.

[68] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “HyGCN: A GCN Accelerator with Hybrid Architecture,”
in HPCA. IEEE, 2020, p. 15.

[69] F. Zokaee, M. Zhang, and L. Jiang, “FindeR: Accelerating FM-Index-
Based Exact Pattern Matching in Genomic Sequences through ReRAM
Technology,” in PACT, Sep. 2019, pp. 284–295.

