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Abstract—As a basic matrix factorization operation, Singular
Value Decomposition (SVD) is widely used in diverse domains. In
real-world applications, the computational bottleneck of matrix
factorization is on small matrices, and many GPU-accelerated
batched SVD algorithms have been developed recently for higher
performance. However, these algorithms failed to achieve both
high data locality and convergence speed, because they are size-
sensitive. In this work, we propose a novel W-cycle SVD to
accelerate the batched one-sided Jacobi SVD on GPUs. The W-
cycle SVD, which is size-oblivious, successfully exploits the data
reuse and ensures the optimal convergence speed for batched
SVD. Further, we present the efficient batched kernel design,
and propose a tailoring strategy based on auto-tuning to improve
the batched matrix multiplication in SVDs. The evaluation
demonstrates that the proposed algorithm achieves 2.6∼10.2×
speedup over the state-of-the-art cuSOLVER. In a real-world
data assimilation application, our algorithm achieves 2.73∼3.09×
speedup compared with MAGMA.

Index Terms—Singular Value Decomposition, GPU

I. INTRODUCTION

The Singular Value Decomposition (SVD) is to factorize
a matrix A into the form A = UΣV T . It is a basic matrix
factorization, which generalizes the eigenvalue decomposition
(EVD) of a positive semi-definite matrix [1]. Many real-world
applications in diverse domains [2]–[4], such as scientific
computing, machine learning, and image processing, deeply
depend on this kernel. For example, SVD enables us to keep
the primary singular values of an image for retaining the image
quality in data compression and reconstruction. Unfortunately,
the real-world data processing problems usually involve a large
number of small-matrix SVDs (with the numbers of rows and

columns not larger than 1, 024), which is time-consuming and
has been the bottleneck of the whole workflow [2], [3].

To implement a high-performance SVD kernel, vari-
ous methods have been developed [1], among which QR-
based [5]–[7] and Jacobi-based [8] algorithms are most com-
monly used. The QR-based algorithms are faster than the
Jacobi-based algorithms in sequential computing [6]. However,
the Jacobi-based algorithms provide singular values as well as
left and right singular vectors with higher relative accuracy [9],
[10], which is crucial to many applications.

The Jacobi-based algorithms have recently attracted a lot of
attention [11]–[13], including one-sided and two-sided Jacobi.
Comparatively speaking, the two-sided Jacobi method usually
converges fast on symmetric matrices, but it is computationally
expensive and inapplicable to vector pipeline computing. Thus,
the one-sided Jacobi method is widely adopted to achieve
high performance for parallel SVD [14]–[18], which motivates
the recent study to accelerate the implementation [19] and
develop a variety of optimizations [20]–[22]. The fundamental
difference between one-sided and two-sided Jacobi methods
is in the sub-matrix orthogonalization. The two-sided Jacobi
method orthogonalizes rows and columns of a matrix at the
same time, which requires a sequential workflow, while the
one-sided Jacobi method only performs the orthogonalization
of columns so that the individual pairs of columns can be
orthogonalized in parallel, which provides more opportunities
to achieve high performance for SVD.

In the one-sided Jacobi method, a matrix A is partitioned
into pairs of column blocks. All the singular values of A are
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obtained until all pairs of column blocks are orthogonalized
with each other. The orthogonalization of column block pairs
is usually assigned to thread blocks (or warps) in Graphic
Processing Unit (GPU), which involves the General Matrix
Multiplication (GEMM) of column block matrices and the
inner product of column vectors. In addition, GPUs have
been demonstrated to be able to provide tremendous com-
putation power for accelerating regular applications such as
GEMMs [23]–[25], which is of significant importance in SVD.

As motioned above, real-world applications usually involve
a large number of small-matrix SVDs, thus it is essential to
adopt batched SVD to improve throughput and resource uti-
lization on GPUs. The recent work has proposed optimizations
for kernel functions of batched one-sided Jacobi method [19]–
[21]. For example, NVIDIA provides a batched one-sided
Jacobi SVD (cublasSVDBatched) in cuSOLVER [20], which
applies to the matrices with the numbers of rows and columns
smaller than 32. The state-of-the-art batched algorithms on
GPUs were proposed to accelerate the orthogonalization of
column blocks in SVDs with the same matrix size [19].

In real-world cases, the matrix sizes in a batched SVD
task may vary significantly, thus the optimal algorithm for
a single SVD does not suit the batched one. A fine-grained
analysis [19] on batched SVD suggests that diverse algorithm
designs for matrices of diverse sizes are necessary to achieve
high performance on GPUs. However, the recent work uses
a uniform column block width to provide ‘‘one-size-fit-all’’
solution for all the SVDs in a batched task, which is static
for diverse matrix sizes. These algorithms can only achieve
sub-optimal for each SVD in a batched task since the high
data reuse and convergence speed can hardly be achieved
simultaneously.

To address this diverse size problem for the batched SVD,
we review the implementations of one-sided Jacobi method
for matrices of different sizes, and find that the different
implementations can be described using a uniform multilevel
workflow with respect to recursion. Based on the insight
that matrices of different sizes require different algorithm
designs, we propose a novel algorithm called W-cycle SVD,
which supports a uniform workflow for the batched one-
sided Jacobi SVD with diverse matrix sizes. Furthermore, two
kernels are designed to accelerate SVD and EVD processes
in our algorithm. Meanwhile, a tailoring optimization is also
developed to improve the parallelism and data reuse of batched
GEMM in SVDs.

W-cycle SVD is a novel multilevel algorithm that performs
different column block rotations for a batched SVD at different
levels, which features the following that differs from previous
work. (1) It ensures that all the decomposed matrices at
any level can be stored entirely in GPU shared memory
to exploit the data reuse of on-chip memory. (2) It selects
a specific optimization parameter for each matrix to ensure
the optimal convergence speed of batched SVD. (3) In prior
work, the multi-grid methods involving a W-cycle workflow
were developed for eigenvalue problems [26], [27]. In these
methods, coarse grids are actually smaller dimension, and grid

transfers are interpretable in terms of accuracy and aliasing.
However, in the multilevel workflow of W-cycle SVD, lower
levels involves smaller tiles, and level transfers are splitting
tiles further. Specifically, our contributions can be summarized
as follows:

• Propose a W-cycle SVD algorithm based on an in-depth
analysis on the performance of batched SVD and two
attractive observations. The proposed algorithm success-
fully exploits the data reuse and ensures the optimal con-
vergence speed for batched SVD on GPUs (Section III).

• Design two efficient batched kernels for the SVD and
EVD processes within GPU shared memory respectively,
and develop a tailoring strategy to accelerate batched
GEMM in SVD by fully exploiting the parallelism and
data reuse, which further improves the performance of
the W-cycle SVD algorithm (Section IV).

• Evaluate and analyze the performance of the W-cycle
SVD, and prove that the proposed algorithm supports the
batched SVD on GPUs well (Section V).

II. BACKGROUND

A. Basic Idea of One-sided Jacobi Method for SVD

Assume that A is a m × n matrix. The SVD of A is to
factorize A into the form

A = UΣV T , (1)

where both U ∈ Rm×m and V ∈ Rn×n are unit orthogonal
matrices, and Σ ∈ Rm×n is a nonnegative diagonal matrix
whose main diagonal arranges all the singular values of A.
Meanwhile, U and V are called the left and right singular
matrices of A respectively.

For SVD computation, the one-sided Jacobi method has
recently attracted a lot of attention because of its intrinsic
parallelism [14]–[22]. To achieve high parallel performance,
the one-sided Jacobi method applies plane rotation matrices
J1, J2, · · · , Jk on the right side of A to orthogonalize the
columns of A. All the columns of A converge to UΣ, that is,

AJ1J2 · · · Jk → UΣ, as k → ∞. (2)

By accumulating the rotations, we have V = J1J2 · · · , which
gives all the right singular vectors. Each rotation matrix Jk is
determined by orthogonalizing any pair of A’s column blocks.

B. One-sided Jacobi Method using Column Block Rotations

Algorithm 1 shows the one-sided Jacobi method based
on column block rotations. For a given width w of column
blocks (1 < w ≤ n/2), the matrix A can be rewritten
as a column block form, i.e., A = [A1, · · · , An/w] where
Ai ∈ Rm×w. To orthogonalize two column blocks Ai and Aj ,
the one-sided Jacobi method joins Ai and Aj together to form
Aij = [Ai, Aj ] ∈ Rm×2w, and updates Ai = Âi and Aj = Âj

by calculating [Âi, Âj ] = AijJij (Line 7 in Algorithm 1). The
matrix Jij is called Jacobi rotation [1], and it can be obtained
by two steps shown in Lines 5 and 6 of Algorithm 1. Step 1:
Compute Bij = AT

ijAij , which is called Gram matrix of Aij .



Step 2: Deduce the rotation matrix Jij based on EVD of Bij

such as Bij = JijΛijJ
T
ij , where Jij ∈ R2w×2w is a unit

orthogonal matrix, and Λij ∈ R2w×2w is a diagonal matrix
whose main diagonal contains 2w eigenvalues of Bij .

For the matrix A with n columns, there exist ⌊n/(2w)⌋
pairs of column blocks where each column block only ap-
pears in one pair, and the corresponding ⌊n/(2w)⌋ column
block rotations can be executed concurrently at each step.
⌊n/w⌋−1 steps are required to complete the orthogonalization
of (⌊n/w⌋−1)∗ ⌊n/(2w)⌋ pairs of column blocks with every
column block pair orthogonalized exactly once, which is called
a sweep. The iterative procedure converges until all the column
blocks are mutually orthogonal up to working accuracy [28].

There are many methods to generate different column block
index pairs (i, j) for parallel execution of ⌊n/(2w)⌋ plane
rotations in each step, including round-robin, odd-even, ring
ordering, etc [12], [29], [30]. When the column block pairs
are chosen systematically, the convergence rate is ultimately
quadratic [1], [31].

Algorithm 1 One-sided Jacobi method using column block rotations
1: Give the width w of column blocks;
2: Rewrite A as A = [A1, · · · , An/w] where Ai ∈ Rm×w;
3: while not converged do
4: for each pair of column blocks Aij = [Ai, Aj ] do
5: Bij = AT

ijAij ;
6: Jij is obtained based on EVD of Bij = JijΛijJ

T
ij ;

7: Ai = Âi and Aj = Âj where [Âi, Âj ] = AijJij ;
8: end for
9: end while

C. One-sided Jacobi Method using Column Vector Rotations

When w = 1, Algorithm 1 is called the one-sided Jacobi
method based on column vector rotations. For the plane
rotation of the i-th and j-th column vectors ai and aj of A, the
rotation matrix Jij ∈ R2×2 can be deduced directly without
using EVD of Bij . The orthogonalization of ai and aj can be
written as

(âi, âj) = (ai,aj) ∗ Jij , and Jij =

(
c −s
s c

)
, (3)

where c =
1√

1 + t2
, s = t ∗ c, and

t =
sign(τ)

|τ |+
√
1 + τ2

, and τ =
aTi ai − aTj aj

2aTi aj
. (4)

Since Jij can be generated directly, the one-sided Jacobi
method based on column vector rotations is usually chosen
in the SVD kernel design for small matrices to fully exploit
the data reuse of on-chip memory in GPUs.

D. Two-sided Jacobi Method for EVD

In Algorithm 1, EVD is required to generate the Jacobi
rotation matrix (Line 6). For EVD of any symmetric matrix
B, the two-sided Jacobi method is to diagonalize B based on
a sequence of Givens rotations G1, G2, · · · , Gk, such as

GT
k · · ·GT

2 G
T
1 BG1G2 · · ·Gk → Λ as k → ∞, (5)

where Λ is a diagonal matrix whose main diagonal contains all
the eigenvalues of B. Further, B = JΛJT and J = G1G2 · · · .
For each step (or elimination process), the two-sided Jacobi
method selects an index pair (i, j) randomly (i < j), and
eliminates two elements bij and bji of B by applying GT

k and
Gk on the left and right sides of B respectively, which can be
viewed as a 2× 2 eigenvalue problem:(

c −s
s c

)T (
bii bij
bji bjj

)(
c −s
s c

)
=

(
b̂ii 0

0 b̂jj

)
.

By solving the problem above, we deduce c =
1√

1 + t2
and

s = t ∗ c, where

t =
sign(ρ)

|ρ|+
√
1 + ρ2

, and ρ =
bii − bjj
2bij

.

It should be noted that the rows and columns in B are updated
at the same time. Hence, the two-sided Jacobi method has to
be executed sequentially [32].

III. W-CYCLE SVD

A. Observation

This work is motivated by two attractive observations.
Observation 1. In Algorithm 1, by denoting Aij = UijΣijV

T
ij

as the SVD of Aij , we observe that the right singular matrix
Vij of Aij equals to the eigenvector matrix Jij of Bij , which
means that SVD of Aij is equivalent to EVD of Bij for
the generation of the rotation matrix Jij . This observation
implies that we can avoid GEMM Bij = AT

ijAij in Line 5 of
Algorithm 1 by directly performing SVD of Aij to generate
Jij instead of executing EVD of Bij . Therefore, the SVD
process of A can be regarded recursively as multiple SVDs
of sub-matrices Aij . As Figure 1 shows, the one-sided Jacobi
method based on SVD of Aij within GPU shared memory
(SM) is faster than using EVD of Bij within SM. However,
SVD of Aij in GPU global memory (GM) is slower than EVD
of Bij in SM (Figure 1). Thus, in our design, if Aij can be
stored entirely in SM, we leverage the SVD of Aij to obtain
Jij directly. Otherwise, we further consider whether the EVD
of Bij can be executed in SM.
Observation 2. The selection of w affects the performance of
the batched SVD in the following two aspects.

First, w affects both the usage of SM and the convergence
speed of the one-sided Jacobi method. On the one hand, as
Figure 2 shows, the number of rotations per sweep decreases
with w increasing, which leads to a faster convergence speed.
On the other hand, w has to be small enough to ensure that Aij

or Bij can be stored entirely in SM for efficiently generating
Jij . Figure 2 also shows that, when w > 24, both SVD of Aij

and EVD of Bij can not be entirely implemented within SM,
which results in longer execution time.

Second, it is not always optimal to select a uniform w for
different matrices in a batched SVD. For instance, we consider
the SVDs of two matrices A1 and A2 of size 32 × 1024
and 1024× 1024 respectively on NVIDIA V100 GPU, which
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GPU.

provides the static SM capacity of 48KB per thread block. To
ensure that either SVD of Ak

ij or EVD of Bk
ij can be executed

entirely within SM (k = 1, 2), a uniform w must be no larger
than 24. However, if we set different w for A1 and A2, i.e.,
w1 and w2, there is only a constraint for w2 ≤ 24. For the
SVD of A1, we can set for example w1 = 48, which ensures
the SVD of A1

ij implemented within SM and achieves better
convergence.

B. Multilevel Perspective

Inspired by the multi-grid method [33], we perform the
column block rotations of different matrices in a batched SVD
at different dedicated levels determined by different w, which
is the key idea underlying the W-cycle SVD. The design of W-
cycle SVD is based on the following theoretical result, which
provides a recursive view of the one-sided Jacobi method from
a multilevel perspective.

Theorem 1: Assume that A is a m × n matrix and B =
ATA. A unit orthogonal matrix V ∈ Rn×n makes sure that
B = V ΛV T is the EVD of B where Λ ∈ Rn×n is a diagonal
matrix and all the eigenvalues of B are arranged along the
main diagonal of Λ, if and only if there exists another unit
orthogonal matrix U ∈ Rm×m such that A = UΣV T is a
SVD of A where Σ ∈ Rm×n places all singular values of A
along its main diagonal and its off-diagonal elements vanish.
Remark. Theorem 1 reveals that SVD of Aij is equivalent to
EVD of Bij for obtaining the rotation matrix Jij .

Assume that there are µ matrices A1, · · · , Aµ, and the size
of Ak is mk×nk (k = 1, 2, · · · , µ). Without loss of generality,
we consider the SVD of Ak, which is placed at the highest
level, i.e., Level 0. Next, Ak is divided into multiple column
blocks Ak

i with the width w, leading to the sub-matrices Ak
ij =

[Ak
i , A

k
j ], which are placed to Level 1. For convenience, we

rewrite Ak
ij as A(1,k)

ij , and denote sub-matrices generated from
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Fig. 3: Overview of W-cycle SVD. The green circles at each
level represent the matrices belonging to the first or second
group, and the batched SVD or EVD in SM is applied to them.
The black circles represent the matrices in the third group, in
which each matrix is further divided into smaller sub-matrices
at the next level. The sketch of the multilevel workflow is like
the capital ‘‘W’’.

Ak at Level h as A
(h,k)
ij hereafter. According to Theorem 1,

the column block rotation of Ak
i and Ak

j needs the SVD of
A

(1,k)
ij to generate the rotation matrix J

(1,k)
ij . In other words,

the SVD of Ak is disassembled into SVDs of A(1,k)
ij at Level 1.

Further, we can recursively summarize a multilevel workflow:
The SVD of A(h,k)

ij with the column block width wh at Level
h involves the SVDs of A(h+1,k)

ij with the smaller width wh+1

at Level h+ 1. The workflow continuously goes down to the
SVDs of the smallest sub-matrices A(L,k)

ij at Level L. If either
A

(L,k)
ij or B(L,k)

ij = (A
(L,k)
ij )TA

(L,k)
ij is small enough, the SVD

of A(L,k)
ij or EVD of B(L,k)

ij would be executed within SM to
obtain the rotation matrix J

(L,k)
ij at Level L. The workflow

returns to the upper level until the SVD on the current level
is completed. Since each SVD needs a sequence of rotations
to ensure that all the column blocks are orthogonalized with
each other, SVD at Level h would call SVD at Level h + 1
repeatedly, which makes the sketch of workflow like the capital
‘‘W’’, as shown in Figure 3.

C. Multilevel Algorithm

Based on the analysis above, we propose W-cycle SVD, a
new multilevel algorithm for batched SVD on GPUs (Algo-
rithm 2). The multilevel workflow of W-cycle SVD is shown
in Figure 3.
Setup: Decide the total number L of levels and the width wh

for Level h. Based on Observation 2, a large w1 is selected.
For h ≥ 2, wh is determined by a given selection way, which
ensures that wh+1 < wh, and EVD of any 2wL× 2wL matrix
can be implemented entirely in SM at Level L. In this work, an
auto-tuning engine is proposed to select wh (Section IV-D3).
Step 1: Execute the batched SVD in SM at Level 0. All
the matrices Ak are at Level 0 (k = 1, · · · , µh). Based on
Observation 1, a batched SVD kernel is applied to the matrices
Ak whose SVDs can be entirely executed within SM (Line 3



Algorithm 2 W-cycle SVD for Batched SVD

1: Input a batch of matrices A1, · · · , Aµ, and the size of Ak is mk × nk

(k = 1, 2, · · · , µ); a given width w for column blocks;
2: if SVD of Ak can be implemented entirely within SM then
3: Compute SVD of Ak by using batched SVD kernel in SM;
4: else
5: Rewrite Ak as Ak = [Ak

1 , · · · , Ak
nk/w

] where Ak
i ∈ Rmk×w;

6: while not converged do
7: for each pair of column blocks Ak

ij = [Ak
i , A

k
j ] do

8: if SVD of Ak
ij can be accomplished entirely within SM then

9: Compute Jk
ij based on SVD of Ak

ij = Uk
ijΣ

k
ij(J

k
ij)

T by
using batched SVD kernel in SM;

10: else if EVD of Bk
ij = (Ak

ij)
TAk

ij can fit in SM then
11: Compute Jk

ij based on EVD of Bk
ij = Jk

ijΣ
k
ij(J

k
ij)

T by
using batched EVD kernel in SM;

12: else
13: Update w by following a given selection way;
14: Use W-cycle SVD with w for Ak

ij to obtain Jk
ij ;

15: end if
16: Ak

i = Âk
i and Ak

j = Âk
j where [Âk

i , Â
k
j ] = Ak

ijJ
k
ij ;

17: end for
18: end while
19: end if

in Algorithm 2). The rest of the matrices go down from Level
0 to Level 1.

Step 2: Execute the batched SVD and EVD in SM at Level
h. When a matrix A(h−1,k) goes from Level h − 1 to Level
h (where A(0,k) = Ak), A(h−1,k) is partitioned to several
column blocks with the width wh. The resulting multiple
A

(h,k)
ij at Level h are divided into three groups: (i) all the sub-

matrices A
(h,k)
ij whose SVD can be accomplished in SM; (ii)

the sub-matrices A
(h,k)
ij satisfying that SVD of A(h,k)

ij can not
be implemented in SM, but EVD of B(h,k)

ij = (A
(h,k)
ij )TA

(h,k)
ij

can be done in SM; (iii) the rest of sub-matrices. For the
first two groups, batched SVD and EVD kernels are used
respectively to obtain the rotation matrices (Line 9 and Line
11 in Algorithm 2). The third group goes to Level h+1 (Line
14 in Algorithm 2).

Step 3: Recursive division. Step 2 is repeated recursively for
the third group until the workflow arrives at Level L.

Step 4: Return to upper level. After the column block rotations
of sub-matrices in the third group are completed, the workflow
goes backward to the upper level. When the workflow returns
Level 0 again, a W-cycle sweep is ended. If the SVD of a
matrix is accomplished at any sweep, it exits the workflow.

After the workflow converges, the right singular matrices
(i.e., V ) for all the SVDs would be obtained. Finally, the left
singular matrices (i.e., U ) and singular value matrices (i.e., Σ)
can be easily deduced.

Remark. The multilevel design naturally avoids using a uni-
form w for all the matrices in batched SVD. Specifically,
the W-cycle SVD keeps different column block rotations at
different levels, which brings two advantages. (1) the genera-
tions of all the rotation matrices at any level are implemented
within SM, which fully exploits the data reuse of SM. (2) w is
selected properly for each matrix at a dedicated level, which
ensures the optimal convergence speed of batched SVD.

can not be stored 
entirely in SM.Ak

i j

Aij
k

w1

Apq
(2,4)Aij

(1,4)

w2

A1
A2

A3
A4

32

32

48

48 32

128

128

128

Filter 2 with w2=16

Filter 1 with w1=32

A2

Inputs

Level 0

Level 1

p q Level 2

A(1,3)
ij A(1,4)

ij

A(2,4)
pq

A1

ij

pq

Multilevel Workflow

Batched SVD
within SM

can not be stored 
entirely in SM.

×

Batched SVD
within SM

Remark: Here, k is 3 or 4.
A(1,4)

ij

Batched GEMM

× =
(A(1,4))T

ij A(1,4)
ij B(1,4)

ij

ij

can not be stored 
entirely in SM.

A(2,4)
pq

Batched GEMM

× =
A(2,4)

pq B(2,4)
pq

ij

B(1,4)
ij

(A(2,4))T
pq

Batched GEMM

×=
A(2,4)

pq J(2,4)
pqÂ(2,4)

pq

×
J(2,4)

pq (J(2,4))T
pqΛ

= B(2,4)
pq

Batched EVD
within SM

is updated. A(2,4)
pq

Fig. 4: An example of W-cycle SVD for four matrices.

D. A Brief Example

Figure 4 illustrates an example of the W-cycle SVD for four
matrices. Initially, four matrices Ak (where k = 1, · · · , 4) are
at Level 0. The batched SVD kernel performs the SVDs of
A1 and A2 since both of them can be entirely implemented
in SM. Next, a large w is selected (w1 = 32) for A3

and A4 to generate A
(1,3)
ij and A

(1,4)
ij which are placed at

Level 1. As the SVD of A
(1,3)
i,j can be entirely implemented

within SM, the rotation matrix J
(1,3)
ij is generated at Level

1. Meanwhile, A(1,4)
i,j is further divided into A

(2,4)
p,q which is

processed recursively in Level 2 with shrinking w (w2 = 16).
Since A

(2,4)
pq is too large for SM while EVD of B(2,4)

pq fits into
SM, the batched EVD of B

(2,4)
pq is conducted at Level 2 to

obtain the rotation matrix J
(2,4)
pq . After the index pairs (p, q)

traverse all of the possible choices, the workflow goes back to
Level 1. At Level 1, the index pairs (i, j) are changed. Until
all the possible (i, j) are chosen exactly once, the workflow
returns to Level 0. The process above repeats for A3 and A4.
If all the column blocks of A3 and A4 are orthogonal with
each other, the SVD is completed.
Remark. It is clear that different w are applied as multiple
filters. When A(h−1,k) goes from Level h − 1 to Level h, it
has to pass through a filter. Meanwhile, A(h−1,k) is divided
to several column blocks, and each pair (i, j) of them forms
A

(h,k)
ij placed at Level h. During all the matrices go through

multiple filters with the decease of w, W-cycle SVD finds a
dedicated w as large as possible for each input matrix.

Although the specific w for each input matrix also can
be statically determined before executing batched SVD, the
proposed recursion based on multilevel workflow has three
advantages.

First, the recursion establishes a hierarchical organization
mode to pair column blocks for rotations, which ensures
both high convergence speed and data locality. However, the
static way determining w without recursion is equivalent to
directly executing rotations at the last level, which ignores the
information at higher levels for organizing column block pairs.

Second, the static way involves multiple individual work-
flows for SVDs with different w, which is still size-sensitive.



However, the recursion achieves a uniform workflow for all
the SVDs, which is size-oblivious and takes the performance
improvement chances from our two observations.

Third, the recursion adaptively places each rotation at the
right level without any preprocessing overhead.

IV. IMPLEMENTATION AND OPTIMIZATION

In the W-cycle SVD, the multilevel workflow requires
batched SVD and EVD kernels in SM, as shown in Figure
4. Moreover, the Gram matrix computation and the column
block update involve two batched GEMMs at each level. In
this section, we present the efficient kernel design of the W-
cycle SVD.

A. Challenges

Challenge 1: How to design efficient batched SVD and EVD
kernels using SM for sub-matrices at each level. The recent
work has shown that the thread-level parallelism of SVD and
EVD kernels within SM is hard to be improved [19]. First, the
batched SVD kernel design usually exploits the data reuse of
SM by using the one-sided Jacobi method based on column
vector rotations which generates the rotation matrix directly.
However, calculating the parameters c and s of Jij involves
three inner products of vectors in Equation (4), which is not
friendly to the thread-level parallelism due to the decrease of
active threads during the summation process. Hence, W-cycle
SVD requires an efficient task assignment mechanism to im-
prove the parallelism of column vector rotations. Meanwhile,
the batched EVD kernel within SM usually needs the two-
sided Jacobi method, which applies the rotation matrix and
its transpose on the right and left sides of the decomposed
matrix simultaneously and updates rows and columns at the
same time (Section II-D). Therefore, when the i-th and j-th of
both rows and columns are updated by Jij , the rest elements in
other rows and columns can not be changed, which leads to a
sequential implementation and limits the potential parallelism.
To break this bottleneck, W-cycle SVD needs a new EVD
kernel that could update all the elements of the decomposed
matrix in parallel.

TABLE I: Different tile sizes for two batched GEMMs at Level 1
of W-cycle SVD with two levels for 100 matrices.

Matrix Size Height of Tile 32 64 128 256 512
Width of Tile Time of Batched SVD (seconds)

8 0.44 0.40 0.39 0.40 -

256×256 16 0.21 0.20 0.20 0.18 -
32 0.15 0.14 0.13 0.15 -
48 0.19 0.20 0.18 0.20 -
8 3.47 3.14 3.04 3.05 3.00

512×512 16 1.64 1.49 1.44 1.44 1.53
32 0.99 0.99 0.95 0.94 0.95
48 1.11 1.04 1.01 1.00 1.00

* For the last column in different cases, the tile height equals to the row
number, which means that each GEMM is assigned to a thread block.

Challenge 2: How to design efficient batched GEMM kernels
at each level. For batched GEMM, it is intuitive to assign each
GEMM task to one thread block. However, it introduces two
implementation issues. First, in the case of small batch size and

small matrix column numbers, the task assignment above leads
to few active thread blocks and low thread-level parallelism.
Second, different matrices may involve different row numbers,
which results in unbalanced workloads for thread blocks. To
solve these two issues, we assign each GEMM task to multiple
thread blocks, rather than only one block as usual. However,
the different tile sizes lead to different data reuse rates of
GEMMs and thus affect the performance of batched SVD
as shown in Table I. Therefore, W-cycle SVD requires an
adaptive approach for the assignment of batched GEMM tasks.

B. Batched SVD Kernel Design Based on Shared Memory

The batched SVD kernel within SM is designed based on
column vector rotations (Section II-C). To maximize the data
reuse, we assign a matrix to one thread block, and keep it in
SM until its SVD is completed. For a m × n matrix A, if
m < n, we execute the SVD of AT instead of A as the SVD
process of AT involves fewer iterative steps. When the SVD
of AT is completed, i.e., AT = Û Σ̂V̂ T , the SVD of A can
be obtained by A = V̂ Σ̂ÛT . Without loss of generality, we
assume that n ≤ m in the following discussion. The batched
SVD kernel design is to solve two issues: (1) how to assign
the column-orthogonalization tasks to the threads; (2) how to
avoid the vector inner products in Equation (4) for calculating
the parameters c and s of Jij .

1) Assignment of Orthogonalization Tasks: To fully exploit
the parallelism of the one-sided Jacobi method, we assign
an orthogonalization task of a pair of columns to α thread
warp rather than one thread [4], [19], where α is chosen
from a set {1, 1/2, 1/4, 1/8}. To determine the value of α, we
propose two methods. Considering the fact one warp usually
includes 32 threads, the first method is to calculate the greatest
common factor β of m∗ and 32 where m∗ = max{mk},
and set α = max{4, β}/32. For example, if m∗ = 48, we
have β = 16 and α = 1/2, which means assigning 16
threads for a pair of columns. The second one is a machine
learning method for training a decision tree to determine α.
We choose m∗ (the largest row number) and µ (the batch
size) as the features, and the optimal α as the label. The data
set is collected by randomly generating thousands of batched
GEMMs and determining the right label for each batch based
on practical tests. For the decision tree, each node makes
choice by performing a comparison. For example, the root
node compares m∗ with a value within this node. If m∗ is
larger than this value, the tree goes deeper along the right
branch. The second node compares µ with a value, and then
it arrives at a leaf node according to the comparison result. The
leaf node is a vector with 4 elements which correspond to the
probabilities to choose the four candidate values of α. The two
methods above both can improve the thread-level parallelism
for the batched SVD in SM.

2) Optimization of Inner Products: To orthogonalize two
column vectors ai and aj , Equation (4) involves three inner
products, i.e., aTi ai, a

T
i aj and aTj aj . Our optimization aims



to avoid the execution of inner products as much as possible.
According to Equation (3), we can derive{

âTi âi = c2 · aTi ai + 2cs · aTi aj + s2 · aTj aj ,
âTj âj = s2 · aTi ai − 2cs · aTi aj + c2 · aTj aj .

(6)

In the one-sided Jacobi method based on column vector
rotations, assume that the values of aTi ai and aTj aj are
recorded at the previous orthogonalization rotation. According
to Equation (4), we only need the inner product aTi aj to
deduce c and s for the current orthogonalization rotation.
Meanwhile, by Equation (6), âTi âi and âTj âj can be obtained
directly and recorded for the next rotation. The approach above
successfully avoids two-thirds of inner product operations in
the orthogonalization process.

C. Batched EVD Kernel Design Based on Shared Memory

In W-cycle SVD, since any matrix A
(h,k)
ij at Level h has

the same column width of 2wh, B
(h,k)
ij = (A

(h,k)
ij )TA

(h,k)
ij

is a 2wh × 2wh square matrix. According to the analysis in
Challenge 1, when the two-sided Jacobi method updates the i-
th and j-th of both rows and columns, the rest elements can not
be changed. Hence, for the EVD of a 20×20 matrix, there are
at most 80 active concurrent threads with each thread updating
one element in two rows and two columns ((2+2)×20 = 80
elements), which limits the parallelism. To address this issue,
we design a new EVD kernel updating all the elements of the
decomposed matrix in parallel.
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Fig. 5: Parallelization of the two-sided Jacobi method.

If the elimination pairs are chosen randomly or following
the common predetermined order such as (1, 2), (1, 3), · · · ,
(1, 2wh); (2, 3), (2, 4), · · · , (2, 2wh); · · · ; (2wh − 1, 2wh),
it is not possible to execute different elimination processes
concurrently. For example, if a row vector is involved in
two adjacent elimination processes, the second process can
not begin until the first one is ended. In order to achieve
parallel implementation, it is necessary to generate a sequence
of elimination pairs such that any index in {1, 2, · · · , 2wh}
appears in a pair only once. Inspired by the one-sided Jacobi
method, we choose the round-robin approach [12], [29] to
determine these pairs. As there are wh(2wh−1) possible pairs,
all the pairs are generated in 2wh − 1 steps with each step
processing wh eliminations in parallel.

For each elimination pair (i, j), we construct the corre-
sponding Givens matrix Gij , and write each step as

B̂ = GT
pq · · ·GT

ijBGij · · ·Gpq, (7)

where (i, j), · · · , (p, q) constitute a round-robin sequence. As
any index from {1, 2, · · · , 2wh} appears only in one pair,
the transposed Givens matrices update different rows of B
in parallel, and the Givens matrices change different columns
of B concurrently. This fact indicates that any element of B̂ in
Equation (7) can be calculated by xTBy, where y is a column
vector chosen from a Givens matrix and xT is a row vector
chosen from the corresponding transposed matrix. Figure 5
shows an example. The element b′23 in B̂ involves the second
row xT of GT

2 and the third column y of G1. Thus, we have
b′23 = xTBy. As any row or column of Givens matrix has at
most two non-zero elements, calculating each element of B̂
only needs 6 multiplications and 3 additions (or subtractions)
as shown in Figure 5. Consequentially, all the elements of B̂
can be calculated in parallel.

D. Tailoring Strategy

In the following, we consider the optimization of the two
batched GEMMs at each level of W-cycle SVD.

Assume that there are µh matrices A
(h,k)
ij at Level h, and

their Gram matrices are denoted as B(h,k)
ij . At Level h, the first

batched GEMM is B
(h,k)
ij = (A

(h,k)
ij )TA

(h,k)
ij . After obtaining

the rotation matrix J
(h,k)
ij , the second batched GEMM is to up-

date A
(h,k)
ij as Â

(h,k)
ij = A

(h,k)
ij J

(h,k)
ij . As i, j = 1, · · ·nk/wh

and k = 1, · · ·µh, the batch size of both batched GEMMs
is

∑µh

k=1
nk

2wh
. According to the analysis in Challenge 2, the

different sizes of A(h,k)
ij impact the thread-level parallelism and

data reuse rate of batched GEMM. Hence, our design aims to
improve the thread-level parallelism and data reuse rate in the
two batched GEMMs.

1) Tailoring Design: As increasing the number of current
thread blocks could improve the thread-level parallelism, our
basic idea is to tailor A(h,k)

ij into multiple segments along the
row direction (Figure 6(b)). By this way, a GEMM task can
be assigned to multiple thread blocks. For the first batched
GEMM, each segment is multiplied by its transposition from
the left side in one thread block. Then, the corresponding
results from multiple thread blocks are summed up to obtain
B

(h,k)
ij (Figure 6(c)). For the second batched GEMM, each

thread block concurrently updates each segment by multiply-
ing the segment with the corresponding rotation matrix J

(h,k)
ij

(Figure 6(d)).
In our tailoring strategy, the task assignment involves three

steps. Firstly, we build a standard plate (SP) of size δh×2wh.
Next, we tailor each A

(h,k)
ij into multiple standard segments

with SP size along the row direction. The residual rows are
viewed as a segment of size (mk − ⌊mk/δh⌋ · δh) × 2wh.
Thirdly, each standard segment is assigned to a thread block.
The residual segments are assigned to a thread block until
the sum of their row numbers exceeds an empirical parameter
1.2δh, then a new thread block is used, and so on.

So far, the values of δh and wh, which are essential for
the performance of batched GEMM, remain undetermined.
To find the optimal values of them, we model the effects of
the tailoring strategy on the thread-level parallelism and data
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Fig. 6: Tailoring strategy.

reuse rate respectively. Based on the performance models, we
construct an optimization problem to determine δh and wh.

2) Performance Models: We define the thread-level paral-
lelism (TLP) as the number of threads for a batched GEMM.
With a δh × 2wh SP and the number of threads Th per
thread block, TLP1 and TLP2 for the two batched GEMMs
described above can be calculated as follows:

TLP1 = TLP2 ≈
µh∑
k=1

nk ·mk

2wh · δh
Th. (8)

It is clear that both TLP1 and TLP2 decrease as the SP size
δh × 2wh increases. Furthermore, the number of threads Th

can also affect parallelism. When Th increases, there are more
threads to exploit TLP.

To model the data reuse rate, we choose the arithmetic
intensity (AI) [34] as a quantitative index. AI is the number
of arithmetic instructions per byte of the memory request.
Larger AI means a higher data reuse rate. The numbers of
load instructions for each thread in two batched GEMMs are{

num_load1 ≈ 2wh·δh
Load_width·Th

,

num_load2 ≈ 2wh·δh+2wh·2wh

Load_width·Th
,

where Load_width is the number of data in one load re-
quest. Moreover, the number of arithmetic FMA instructions
for each thread can be approximated as: num_FMA1 =
num_FMA2 ≈ 2wh·2wh·δh

Th
. Further, the ratio of arithmetic

instruction to load instruction, i.e., num_FMA/num_Load,
leads to AI1 and AI2 for the two batched GEMMs:{

AI1 = num_FMA1

num_load1
≈ Load_width · 2wh,

AI2 = num_FMA2

num_load2
≈ Load_width · 2wh·δh

2wh+δh
.

(9)

3) Auto-tuning Engine: To determine the optimal δh and
wh, we build a multiple-objective programming problem based
on the performance models above. Empirically, we give higher
priority to TLP and then optimize AI. Hence, the first objective
is to maximize TLP1 + TLP2. Although smaller wh leads to
larger TLP, it also produces more column blocks, resulting in
more orthogonalization processes in a sweep. In order to limit
the number of orthogonalization processes, maximizing AI1
is chosen as the second objective due to the linear relationship
of AI1 and wh. Then, maximizing AI2 is defined as the third

objective. Combining the three objectives above, the multiple-
objective programming problem can be described as

max
δh,wh,Th


f1 =

∑µh

k=1
nk·mk

wh·δh Th,

f2 = Load_width · 2wh,

f3 = Load_width · 2wh·δh
2wh+δh

.

(10)

To solve the optimization problem (10), we propose an
efficient method with two steps.

TABLE II: Tailoring parameters.

No. wh δh Th

1 48 m∗ 256
2 24 m∗ 256
3 24 m∗/2 256
4 16 m∗/2 256
5 16 m∗/4 256
6 16 m∗/8 256
7 8 m∗/4 128
8 8 m∗/8 128

TABLE III: Available plans.

No. wh δh Th

1 48 256 256
2 24 256 256
3 24 128 256
4 16 128 256
5 16 64 256
6 16 32 256
7 8 64 128
8 8 32 128

The first step is to generate a series of candidate solutions
(the effective tailoring parameters) as shown in Table II.
First of all, we give higher priority for Th = 256 than
Th = 128, since larger Th leads to higher TLP. Next, to
make sure that either SVD of A

(h,k)
ij or EVD of B

(h,k)
ij

can be implemented entirely in SM, we set wh ≤ 48
(Observation 2 in Section III-A) and select δh sequentially
from a set {m∗,m∗/2,m∗/4,m∗/8, · · · } where m∗ is the
largest row number of all the matrices. Further, we arrange
all the candidate solutions in the increasing order of TLP
and the descending order of AI (Table II), which essentially
determines the search direction. Specifically, with the solution
index increasing, f1 increases while f2 and f3 decrease.

The second step is to search for the optimal solution (the op-
timal tailoring parameters). At this step, we pick out candidate
solutions sequentially from Table II until the selected solution
makes f1 larger than a predefined threshold. For a given
platform, we determine the threshold by evaluating all the
tailoring solutions in Table II for two batched GEMMs in SVD
of a huge matrix, and calculating the different overall TLPs of
different solutions. We choose the threshold as the TLP which
leads to the inflection point with no significant performance
improvement anymore. The threshold is determined only once
for a particular platform.



Specifically, we present an example to show how the method
above works. Assume that there are 100 matrices with the
same size of 256× 256. Firstly, we generate all the available
tailoring plans in Table III with m∗ = 256. The threshold
is determined as 306, 149 on NVIDIA Tesla V100 GPU.
Next, we select the first candidate from Table III, and derive
f1 = 68, 267, which is smaller than the threshold. Then, the
next solution is checked, and so on. The check process ends
until the fourth solution is selected, which provides the final
tailoring parameter with f1 = 409, 600.

V. EVALUATION

As an illustration of the effectiveness of the proposed W-
cycle SVD, this section presents the performance evaluation
of W-cycle SVD alone and W-cycle SVD combined with the
tailoring strategy. Most of the evaluation results are tested on
NVIDIA Tesla V100 GPU. To evaluate the portability of W-
cycle SVD, we further perform the evaluation on different
GPU architectures, such as NVIDIA Ampere A100, Tesla
P100, GTX Titan X, and AMD Vega20 GPUs. The TLP
threshold is set as 306, 149 for the auto-tuning engine. In
addition, we use the C language for programming with CUDA-
10.1 and ROCm-3.5.

In the evaluation, the cuSOLVER [20] is used as the
baseline, which provides the batched SVD API requiring the
matrix size m and n smaller than 32. For larger matrices
not supported by the batched SVD API, the baseline is set
to serially call a single SVD API in cuSOLVER. Further,
we also show the comparison between W-cycle SVD and
MAGMA [22], [35] on GPUs. Finally, we demonstrate that the
W-cycle SVD achieves performance speedup in a real-world
application: the data assimilation in oceanic models [36]–[38].

A. Evaluation of W-cycle SVD
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Fig. 7: W-cycle SVD for improvement over cuSOLVER.

1) Performance Comparison with Batched SVD Kernel
Function in cuSOLVER: Figure 7 shows the performance
comparison of W-cycle SVD with the batched SVD kernel in
cuSOLVER. In the experiment, two batched GEMMs at each
level of W-cycle SVD are implemented using the common
way with a thread block for one GEMM. Since the numbers
of rows and columns are no larger than 32, each SVD can
be executed entirely within SM. It is clear that W-cycle SVD
achieves 2.6 ∼ 10.2× speedup. Three observations from the
results are presented as follows.

Firstly, for the fixed m and n, the performance benefit of W-
cycle SVD increases with the growth of the batch size, which
owes to our batched SVD kernel design based on SM. When

the batch size is small, using α warp for each orthogonalization
task provides a higher degree of potential parallelism. When
the batch size is large, avoiding two-thirds of vector inner
products improves the performance significantly.

Secondly, for a given batch size, the performance benefit of
W-cycle SVD decreases with the increase of matrix size. For
instance, when the batch size is 100, the speedup achieves
7.2× for the 8 × 32 matrices, while the speedup becomes
2.7× for the 32× 32 matrices. The reason is that our batched
SVD kernel leads to higher parallelism for SVDs of smaller
matrices.

Thirdly, compared with the batched SVD with m > n, W-
cycle SVD achieves higher speedup for SVDs with m ≤ n,
because SVDs of the transpose of the matrices with m ≤ n
are executed to decrease the iteration number for each sweep.
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Fig. 8: W-cycle SVD for performance improvement.

2) Performance Comparison with Batched SVD Implemen-
tation Based on cuSOLVER: Figure 8 shows the performance
comparison between W-cycle SVD and a batched SVD im-
plementation using SVD kernel in cuSOLVER for matrices
of size larger than 32 × 32. As Figure 8(a) shows, when the
batch size is one, W-cycle SVD achieves 1.37× speedup on
average compared with cuSOLVER, which indicates that W-
cycle SVD also has high performance for single SVD. This is
because our batched EVD kernel realizes the parallel update.

Figure 8(b) gives the test results with various batch sizes.
W-cycle SVD achieves 2 ∼ 20× performance speedup over
cuSOLVER. We highlight that the benefit of W-cycle SVD is
consistent as the batch size increases, which implies that our
design has significant performance improvement. This mainly
owes to the multilevel design achieving both high data reuse
and fast convergence speed simultaneously.

3) Performance Comparison with Batched SVD Implemen-
tation Based on MAGMA: Figure 9 shows the performance
comparison between W-cycle SVD and a batched SVD im-
plementation using SVD kernel in MAGMA. For single SVD,
W-cycle SVD achieves at least 2.78× speedup compared with
MAGMA. For batched SVD, the speedup is always larger than
4.2× in different cases, and the benefit of W-cycle SVD is
consistent with the increase of the batch size.
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Fig. 9: W-cycle SVD for improvement over MAGMA.

TABLE IV: Time (seconds) for SVDs of 200 Matrices with the
same size on P100 GPU.

Matrix Size (m = n) 100 128 256 512

Batched DP Direct [19] 0.103 0.211 1.395 10.41
Batched DP Gram [19] 0.132 0.253 1.294 7.316

cuSOLVER 0.527 1.134 2.549 9.750
W-cycle SVD 0.012 0.051 0.316 2.012

4) Performance comparison with the state-of-the-art
batched SVD methods: Based on NVIDIA Tesla P100 GPU,
several optimized batched SVD implementations are presented
in [19], and the reported performance improvement over
cuSOLVER is impressive. We compare W-cycle SVD with the
state-of-the-art batched SVD methods in [19] by collecting the
results of our algorithm with the same experimental hardware
and software parameters, e.g., batch size and matrix size.

As shown in Table IV, both W-cycle SVD and implemen-
tations in [19] are faster than cuSOLVER. We highlight that
W-cycle SVD further achieves 4.1 ∼ 8.6× and 3.6 ∼ 11×
speedups respectively compared with Batched_DP_Direct,
Batched_DP_Gram in [19].

B. Analysis on Speedups

Compared with cuSOVLER and MAGMA, W-cycle SVD
achieves at least 1.24× performance speedup for the single
SVD, and at least 2.2× performance speedup for the batched
SVD. Our analysis on the speedup focuses on parallelism and
locality through benchmarks and GPU profiling data.
Parallelism. In W-cycle SVD, the batched SVD kernel uses
α warp for the column rotation tasks. As Figure 10(a) shows,
compared with using one warp as usual, our approach achieves
higher performance. Moreover, our batched EVD kernel im-
plements the parallelization of the two-sided update, which
achieves more than 6 times faster than the sequential one, as
shown in Figure 10(b).
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Each matrix size is 32× 32.

Figure 11(a) shows the GPU occupancy rate of W-cycle
SVD. With the batch size enlarging, the GPU occupancy rate

of W-cycle SVD increases monotonously, which consists with
the fact that the performance speedup becomes larger with the
increase of batch size. Further, the occupancy rate of GPU
gradually approaches the GPU’s peak occupancy rate as batch
size increases from 10 to 500.
Locality. W-cycle SVD improves the data locality significantly.
Usually, the fewer GM transactions indicate the better data
locality of kernels. Figure 11(b) gives the comparison of
the overall GM transactions between W-cycle SVD and
cuSOLVER. It is clear that W-cycle SVD exchanges fewer
data between fast on-chip memory and GM than cuSOLVER,
which implies that W-cycle SVD has a better data locality.
This is because W-cycle SVD makes better use of SM for
its flexible choice of wh so that most of the calculations are
performed in SM.

We should note that the number of GM transactions of
cuSOLVER is close to that of W-cycle SVD for the case
with m = n = 32. We guess that cuSOLVER adopts a static
algorithm specially optimized for some matrix size e.g., m =
n = 32. As Figure 7 shows, W-cycle SVD also achieves lower
speedup on case of m = n = 32 compared with other cases.
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C. Evaluation of Tailoring Strategy

Figure 12 shows the speedup of W-cycle SVD with different
tailoring strategies over W-cycle SVD without tailoring. We
find that W-cycle SVD with the tailoring strategy achieves
1.2× performance speedup on average compared with W-
cycle SVD without tailoring. When the batch size is 10,
the tailoring strategy with auto-tuning engine provides around
1.11× speedup. With the batch size enlarging, the performance
benefit increases. When the batch size is 500, the performance
improvement becomes 1.48× at most.

From Figure 12, we conclude two observations. First, with
the increase of either batch size or matrix size, the rate of per-
formance improvement increases. The main reason is that the
tailoring strategy exploits more parallelism, ensuring a higher
GPU occupancy rate. Second, when the matrix size is large
enough, the GPU occupancy rate of W-cycle SVD is close
to the GPU’s peak occupancy rate (Figure 11(a)). The perfor-
mance benefit from tailoring strategies is no longer significant.

Furthermore, Table V shows the runtime of W-cycle SVD
with different tailoring plans. We compare the tailoring plans
provided by the auto-tuning engine with all the plans based on
the expertise. In most cases, the auto-tuning approach can find
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Fig. 12: W-cycle SVD with different tailoring plans for per-
formance improvement over W-cycle SVD without tailoring.

the optimal solution for the tailoring strategy. Even though the
auto-tuning solution is sub-optimal, the performance variabil-
ity is less than 12% compared with the theoretical optimal
which is obtained by testing all the candidates. This fact
implies that the auto-tuning engine is effective and reliable.

TABLE V: Time (seconds) of W-cycle SVD with different plans.

Tailoring Plan Matrix Size (m=n)
64 128 256 512 1024

δ1 = 32, w1 = 4 0.0124 0.0639 0.471 3.602 30.58
δ1 = m, w1 = 4 0.0122 0.0376 0.135 0.453 1.83
δ1 = 32, w1 = 24 0.0132 0.0304 0.198 1.053 8.21
δ1 = m, w1 = 24 0.0136 0.0365 0.154 0.421 1.72
δ1 = 32, w1 = 16 0.0065 0.0272 0.169 1.198 8.55

Auto-tuning 0.0058 0.0272 0.152 0.421 1.59
Theoretical optimal 0.0058 0.0263 0.135 0.421 1.59

D. Evaluation of W-cycle SVD with variable matrix sizes

Table VI gives the results of the batched SVD with various
matrix sizes. We choose different matrices with variable sizes
from SuiteSparse [39], which is one of the most commonly
used data sets. The matrices in SuiteSparse are assigned into
five groups according to the size metric in the first column of
Table VI.

The result shows that W-cycle SVD achieves 2.21 ∼ 15.0×
speedup over cuSOLVER. It should be noted that, for the
second and third groups, W-cycle SVD achieves much higher
speedup than the average, because the tailoring strategy sig-
nificantly improves the parallelism for SVDs in these cases.

TABLE VI: Evaluation of W-cycle SVD with various matrix sizes.
Matrix Size Batch Size cuSOLVER W-cycle SVD Speedup(not larger than) (seconds) (seconds)

m,n ≤ 32 46 0.000548 0.000181 3.03
m,n ≤ 64 85 0.0537 0.00359 15.0
m,n ≤ 128 156 0.287 0.0267 10.8
m,n ≤ 256 243 1.02 0.198 5.18
m,n ≤ 512 458 6.07 2.75 2.21

E. Sensitivity for GPU Architecture

To demonstrate the portability on GPU architectures, we
evaluate W-cycle SVD with the tailoring strategy on different
platforms.

Figure 13 shows the applicability on A100 GPU with tensor
cores. The performance envelope of W-cycle SVD is pushed
further, because the tensor cores significantly accelerate the
two batched GEMMs at each level.
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Fig. 13: W-cycle SVD for performance improvement over
cuSOLVER on NVIDIA A100 GPU with tensor cores.

For the batched SVD of 100 randomly generated matrices
with each size of 512×512, Figure 14(a) shows that, compared
with cuSOLVER, W-cycle SVD can achieve 4.56×, 4.72×
and 4.85× speedups on V100, P100 and GTX Titan X GPUs
respectively. Compared with MAGMA, W-cycle SVD achieves
2.85× speedup on AMD Vega20 GPU with HIP runtime v4.5.
We have demonstrated that W-cycle SVD achieves a consistent
performance speedup on different architectures.
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In addition, some ML/AI algorithms also use SVDs with
the data type of low-bit float, e.g., bf16. To further extend
W-cycle SVD for these cases, the improvement of our design
may focus on two aspects. First, the low-bit representation
takes less memory and cache space. Hence, larger matrices
can be entirely stored in SM, which allows W-cycle SVD to
explore the larger wh and deeper recursion. Second, to exploit
the performance potential of tensor cores with low-bit floats,
it is necessary to reconfigure the performance model and auto-
tuning engine. This will be our future work.

F. Performance Improvement on Real-world Application

Data assimilation is widely applied to the reconstruction
of observed historical data for providing initial conditions of
numerical atmospheric [40], [41] and oceanic models [36]–
[38]. On the latitude-longitude mesh of an oceanic model with
0.1◦ spatial resolution, the data assimilation on each grid point
involves one SVD. SVDs in different points can be batched
together, and each matrix size ranges from 50× 50 to 1024×
1024. Figure 14(b) shows the computation time of data as-
similation using W-cycle SVD and MAGMA on a distributed-
memory system with AMD Vega20 GPU. W-cycle SVD
achieves 2.73 ∼ 3.09× speedup compared with MAGMA.



G. Evaluation on the convergence speed and accuracy

To verify the robustness of W-cycle SVD, we compare the
convergence speed and final accuracy of W-cycle SVD and
cuSOLVER for a single SVD. In this test, five matrices are
chosen from SuiteSparse, as shown in Table VII. For the
fixed final accuracy, W-cycle SVD needs fewer sweeps than
cuSOLVER. Furthermore, with the increase of the matrix con-
dition number, both the convergence would delay. However,
W-cycle SVD still converges faster.

Figure 15(a) confirms that W-cycle SVD also has the
advantage on the final accuracy. At any sweep, W-cycle SVD
owns a lower error compared with cuSOLVER.

Furthermore, Figure 15(b) shows how the tile size affects the
convergence speed. It is clear that the number of rotations per
sweep decreases with wh increasing, which leads to a faster
convergence speed. Meanwhile, for a fixed wh, changing δh
can not affect the convergence rate.

TABLE VII: Evaluation on the accuracy and convergence speed.

Matrix Feature Number of sweeps
(Error is less than 10−12)

Name Size Condition Number cuSOLVER W-cycle SVD

ash331 331×104 3.10×100 8 6
impcol_d 425×425 2.06×103 15 12
tols340 340×340 2.03×105 14 10

robot24c1_mat5 404×302 3.33×1011 14 13
flower_7_1 463×393 8.08×1015 28 22
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Fig. 15: Evaluation on the accuracy and convergence speed.
The test matrix is impcol_d in Table VII.

VI. RELATED WORK

SVD is an important operator for many applications in
a broad range of domains. Related work focuses on SVD
optimization from algorithm level [42]–[44] and architecture
level [17], [19], [45].

Batched SVD. Recent decade has witnessed the develop-
ment of batched SVD on GPUs. To the best of our knowledge,
the GPU-CPU hybrid algorithm for batched SVD was first
proposed for the detection of quiet targets in underwater
acoustic array signal processing [2]. This algorithm focused on
the pair generation for the Jacobi method and handled the bi-
diagonalization phase of Gram matrices on CPU. Afterward,
batched SVD on GPU was studied to generate rank 1 matrices
for approximating 2D filters in convolutional neural networks
[3], which only focused on how to obtain the largest singular

values and the corresponding singular vectors of many small
matrices of size less than 15 × 15. Then, a parallel method
for SVD of many matrices on GPUs was proposed for the
image mosaic assemble application [4], and one thread within
a warp was applied to compute the SVD of a matrix. In recent
years, the fine-grained analysis on batched SVD suggested
that the matrices of different sizes need different algorithm
designs to achieve high performance on GPUs [19]. The
related work primarily was size-sensitive [1]–[4], [19], which
hardly achieved high data reuse and convergence speed at the
same time. In this work, we first propose a W-cycle SVD,
which supports two key optimizations: (1) exploiting the data
reuse of SM for each SVD, and (2) ensuring the optimal
convergence speed for each SVD.

Software Projects. NVIDIA cuSOVLER library [20], [35]
is a fast GPU-accelerated package that provides lots of useful
linear algebra solvers, such as common matrix factorization
routines for dense matrices, a sparse least-squares solver,
and an eigenvalue solver, etc. The basic matrix factorization
SVD is one of the common routines in cuSOVLER. Mean-
while, cuSOVLER also provides a batched SVD API for
programmers. cuSOVLER fully exploits parallel features of
Jacobi-based algorithms, and the corresponding SVD solvers
represent the state-of-the-art implementation. While it is not
open source, cuSOVLER enables a CUDA program to achieve
good performance. In addition, Matrix Algebra on GPU and
Multi-core Architectures (MAGMA) [22], [35] is a dense
linear library for multi-core GPU systems, which is open
source. MAGMA group designed linear algebra algorithms
and frameworks for hybrid many-core and GPU systems that
enable applications to fully exploit the power of hybrid com-
ponents [46]. MAGMA supports the SVD bi-diagonalization
in distributed-memory GPU systems [21]. To the best of
our knowledge, our work is the first one to propose a uni-
form algorithm for batched SVD with various matrix sizes.
Compared with cuSOLVER and MAGMA, W-cycle SVD
achieves significant performance improvement for bathed SVD
on GPUs.

VII. CONCLUSION

This work presents an in-depth analysis on the performance
of batched SVD from the algorithm level. Based on two
observations, we develop W-cycle SVD, which is a multilevel
algorithm for batched SVD on GPUs. To push the envelope of
performance further, we design the efficient batched SVD and
EVD kernels, and propose a tailoring strategy to accelerate
batched GEMM in SVDs. The experimental results confirm
the high performance of W-cycle SVD.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
A ARTIFACT DETAILS
A.1 Abstract Summary
W-cycle SVD is a multilevel algorithm for batched SVD on GPUs.
W-cycle SVD is size-oblivious, which successfully exploits the data
reuse and ensures the optimal convergence speed for multiple SVDs.
To push the envelope of performance further, we design the efficient
batched SVD and EVD kernels, and propose a tailoring strategy
to accelerate batched GEMMs in SVDs. The project we provided
includes the full source code of W-cycle SVD program. We also
append extra contents for the convenience of those experiments
reported in our paper.

A.2 Abstract Checklist
• Platforms:
1. NVIDIA CUDA platforms

The Platforms we used are:
- Tesla V100
- Tesla P100
- GTX TiTan X
- Ampere A100

2. AMD ROCm platforms
The Platforms we used are:
- A single AMD Vega20 GPU
- A cluster with Vega20 GPUs

• System Details:
- 18.04-Ubuntu x86_64 GNU/Linux (V100, P100 and TiTan X)
- CentOS 7.9 (A100)
- CentOS 7.6 (AMD Vega20 GPU)

• Software Dependencies:
- GNU Make 4.1
- CUDA toolkit (tested 10.1, 11.6)
- nvprof profiling tool
- gcc/g++ (tested 4.8.5, 7.5)
- ROCm (tested 3.5, 4.2)
- Intel oneMKL (tested 2022.1.0)
- MAGMA (tested 2.5.4)

A.3 Environment Setup
Step 1: Basic environment.
(a) CUDA Platform:
- CUDA toolkit (version more than 10.1) should be installed. The
compiler used is nvcc. Extra libraries needed are cuSOLVER,
cuBLAS and MAGMA. Here, MAGMA depends on CUDA toolkit
and intel oneMKL.
(b) ROCm Platform:
- ROCm toolkit (version more than 4.2) should be installed. The
compiler used is hipcc. The extra library needed is MAGMA (hip).
Here, MAGMA depends on ROCm toolkit and intel oneMKL.

Step 2: Compile the program.
The project can be accessed on the Github by:
Link: https://github.com/MOLOjl/WCycleSVD
- Use git (http, ssh, etc.) to clone the repository into a local directory.
For the four environments on which our artifact is tested, there are
4 branches:

(i) main_CUDA,
(ii) test_Tensor_Core,
(iii) test_HIP,
(iv) test_Cluster

- Run make at the root directory, after respectively cloning each
branch to the corresponding platform.

Step 3: Prepare necessary data.
For the "main_CUDA" branch, the data are too large to store in the
repository on the Github website. Please generate them manually
by running the following commands:
- unzip data/UF_matrixset.zip
- ./test 99

A.4 Experiments list
This list shows how to reproduce the results of all the experiments
in the revised paper.

(i) On V100, P100 and GTX TiTan X ("main_CUDA" branch):

(1) Time of one-sided Jacobi methods in different cases. (Fig. 1)
- Run: ./test 1

(2) One-sided Jacobi method for a batched SVD of 100 matrices
with each size of 1536×1536. (Fig. 2)
- Run: ./test 2

(3) Different tile sizes for two batched GEMMs at Level 1 of
W-cycle SVD with two levels for 100 matrices. (TABLE I)
- Run: ./test 3

(4) W-cycle SVD for improvement over cuSOLVER with matrix
size below 32. (Fig. 7)
- Run: ./test 4

(5) Comparison with cuSOLVER using batch size=1 with matrix
size between 500 and 10000. (Fig. 8(a))
- Run: ./test 5

(6) W-cycle SVD for performance improvement with matrix size
between 64 and 1024. (Fig. 8(b))
- Run: ./test 6

(7) W-cycle SVD for performance improvement over MAGMA.
(Fig. 9)
- Run: ./test 7

(8) Time(s) for SVDs of 200 Matrices on P100 GPU. (TABLE IV)
- Run: ./test 8

(9) Comparison between different approaches using one warp
or 𝛼 warps for column rotation tasks. (Fig. 10(a))
- Run: ./test 9
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(10) Comparison between the original and parallel two-sided
Jacobi methods for bathed EVD. (Fig. 10(b))
- Run: ./test 10

(11) GPU occupancy rate of batched SVD. (Fig. 11(a))
- Run: ./test11.sh

(12) Ratio of GM transaction number of W-cycle SVD over cu-
SOLVER. (Fig. 11(b))
- Run: ./test12.sh

(13) Improvements of the tailoring strategy. (Fig. 12)
- Run: ./test 13

(14) Time(s) of W-cycle SVD with different tailoring plans. (TA-
BLE V)
- Run: ./test 14

(15) Evaluation of W-cycle SVD with various matrix sizes, with
SuiteSparse matrix set. (TABLE VI)
- Run: ./test 15

(16) Sensitivity on different GPUs. (Fig. 14(a))
- Run: ./test 17

(17) Evaluation on the accuracy and convergence speed. (TABLE
VII)
- Run: ./test 18

(18) Evaluation on the accuracy. (Fig. 15(a))
- Run: ./test 19

(19) Evaluation on the convergence speed. (Fig. 15(b))
- Run: ./test 20

(ii) On A100 ("test_Tensor_Core" branch):
(1) Evaluation on A100 GPU with tensor cores. (Fig. 13)

- Run: ./test 16
(iii) On AMD Vega20 GPU ("test_HIP" branch):

(1) Sensitivity on different GPUs. (Fig. 14(a))
- Run: ./svd

(iv) On GPU cluster ("test_Cluster" branch):
(1) Data assimilation application. (Fig. 14(b))

- Run: sbatch test18.slurm
The number of GPUs used is defined in the script
test18.slurm. After the program finished, the result will be
written in test18.o.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://github.com/MOLOjl/WCycleSVD
Artifact name: WCycleSVD

Artifact 2
Persistent ID: 10.5281/zenodo.6585881
Artifact name: WCycleSVD

Reproduction of the artifact with container: We have provided all
the source codes and the building guidance on the Github website.
Please follow the "README.md" file or the instruction in the artifact
details to reproduce our artifact.
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