
Fast Implementation of DGEMM on Fermi GPU∗

Guangming Tan†, Linchuan Li†, Sean Triechle‡, Everett Phillips‡, Yungang Bao†, Ninghui Sun†

†Key Laboratory of Computer Architecture, Institute of Computing Technology,Chinese Academy of Science
‡Nvidia Corporation

{tgm,lilinchuan,baoyg,snh}@ncic.ac.cn,{striechler,ephillips}@nvidia.com

ABSTRACT
In this paper we present a thorough experience on tun-
ing double-precision matrix-matrix multiplication (DGEM-
M) on the Fermi GPU architecture. We choose an optimal
algorithm with blocking in both shared memory and regis-
ters to satisfy the constraints of the Fermi memory hierarchy.
Our optimization strategy is further guided by a perfor-
mance modeling based on micro-architecture benchmarks.
Our optimizations include software pipelining, use of vector
memory operations, and instruction scheduling. Our best
CUDA algorithm achieves comparable performance with the
latest CUBLAS library1. We further improve upon this with
an implementation in the native machine language, leading
to 20% increase in performance. That is, the achieved peak
performance (efficiency) is improved from 302Gflop/s (58%)
to 362Gflop/s (70%).

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices; C.1.2 [Multiple Data Stream Archi-
tectures (Multiprocessors)]: Single-instruction-stream
multiple-data-stream processors

General Terms
Algorithms, Performance

Keywords
high performance computing, GPU, CUDA, matrix-matrix
multiplication

∗This work is supported by National 863 Program
(2009AA01A129), the National Natural Science Foundation
of China (60803030,61033009,60921002,60925009) and 973
Program (2011CB302500).
1CUBLAS3.2 was the latest version when this work has been
done. Now CUBLAS4.0 is released, but its DGEMM per-
formance stays the same level as before. Therefore, we still
use CUBLAS3.2 for comparison in this paper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11 November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

1. INTRODUCTION
Dense matrix operations are important problems in sci-

entific and engineering computing applications. There have
been a lot of works on developing high performance libraries
for dense matrix operations. Basic Linear Algebra Sub-
programs (BLAS) [4] is a defacto application programming
interface standard for publishing libraries to perform basic
linear algebra operations such as vector and matrix multi-
plication. The first BLAS was released as a building block
of LAPACK [2], which is a performance portable library for
implementing dense linear algebra. Hardware vendors also
provide BLAS libraries tuned on their own processors, i.e.
MKL and ACML. It is well-known that the performance of
BLAS depends on the underlying hardware [3, 5].

Recently, multi/many-core CPU processors have become
mainstream since parallelism has shown strength in over-
coming power and frequency limits of the latency optimized
architecture. The GPU, on the other hand, evolved as a
data parallel processor optimized for throughput. As a re-
sult the GPU outpaces modern CPUs in performance. Over
time the GPU has become more programmable which lead
to adoption of the GPU as an accelerator for general pur-
pose computing including numerical computations. Since
dense matrix operations are compute intensive and exhib-
it regular memory access patterns, they are especially well
suited for the GPU architecture. NVIDIA has produced
a series of GPU architectures: G80, GT200 and Fermi.
For each generation it announced a corresponding matrix
computation library CUBLAS. Undoubtedly, these libraries
achieve higher performance than its counterparts (i.e. MKL,
ACML) on general-purpose multi-core CPU. For example,
CUBLAS3.2 on the latest Fermi GPU outperforms Intel’s
MKL on Xeon six-core processors (Westmere) by more than
five times. According to the release note of CUBLAS3.2,
it adopts a similar idea with MAGMA [9]. However, al-
l available materials from both NVIDIA and MAGMA do
not address following two unsolved problems:

• What are the technical details behind the performance
improvement? As we know, CUBLAS3.0 achieves
more than 90% efficiency of peak performance on
GT200 architecture. However, CULBAS3.2 does not
get portable efficiency on the new Fermi architecture
although it is much faster than CUBLAS3.0. It is a
definite fact that CUBLAS3.2 uses some different op-
timizations for better performance. Is the difference
from algorithmic innovation or any optimization strat-
egy specific to Fermi’s new feature?

• Is there any more room for further performance im-
provement? The experiments show that CUBLAS3.2
achieves about 58% efficiency of peak performance.
With respect to efficiency of floating-point calculation,
it is much worse than both the previous generation
and its counterpart on multi-core CPUs. NVIDIA
claims that Fermi is enhanced with some architec-
tural innovations for general-purpose computing. Does
CUBLAS3.2 take full advantage of Fermi’s new fea-
tures? What is the limitation for higher performance?

In this paper, we address these issues by investigating
Fermi’s micro-architecture and going deeply into a fast
DGEMM implementation. DGEMM is a pronoun of general
double-precision matrix-matrix multiplication in BLAS [4].
It is a performance critical kernel in numerical computations
including LU factorization, which is a benchmark for rank-
ing supercomputers in the world. We take DGEMM as an
example to illustrate our insight on Fermi’s performance op-
timizations through this paper. Specifically, we make three
main contributions in this paper:

• We formulate a performance model to select an op-
timal algorithm for blocking matrix multiplication on
the Fermi architecture. We use benchmarking to i-
dentify a global memory access pattern for maximiz-
ing effective bandwidth. Combined with a software
prefetching strategy, our algorithm achieves compara-
ble performance with CUBLAS3.2.

• We discuss three optimization strategies to exploit the
potential of Fermi’s computing capability. The three
incremental strategies include wider memory opera-
tions, double-buffering in shared memory, and instruc-
tion scheduling. Our experiments indicate that it is
necessary to tune the code by hand for a maximal
performance. Finally, the DGEMM program using all
three strategies together achieves 20% higher perfor-
mance than the latest CUBLAS3.2.

• We present an experimental experience on tuning
DGEMM code on the Fermi architecture. A micro-
benchmark analysis of Fermi architecture is used to
guide program optimizations. The benchmark makes a
connection between Fermi’s architectural features and
program implementation choice. These results are not
disclosed in NVIDIA’s programming manuals and may
be instructive to both other math libraries and com-
piler optimization.

Overall, this paper presents a deep insight on optimizing
the performance critical code DGEMM by taking full advan-
tage of the emerging many-core architectures like NVIDIA’s
Fermi GPU. In fact, the optimized DGEMM code present-
ed in this paper has been adopted as one part of NVIDIA’s
accelerated library for running Linpack on top ranking su-
percomputers including Tianhe-1A and Nebulae, who now
are ranking the No.1, No.3 in the world, respectively. We de-
mystify the technical details on Fermi architectural features
and how to implement an extremely fast DGEMM code on
Fermi. The rest of this paper is organized as follows: Sec-
tion 2 gives a brief background on Fermi architecture and
DGEMM. Section 3 and 4 detail the proposed parallel algo-
rithm and performance tuning on Fermi. The performance

Table 1: Summary of NVIDIA GPU architecture
Parameters/GPU GT200 Fermi
CUDA cores 240 448(512)
DP peak 30MAD/ops 256FMA/ops
SP peak 240MAD/ops 512FMA/ops
Warp scheduler/SM 1 2
Shared memory/SM 16KB 48KB or 16KB
L1 cache/SM N/A 16KB or 48KB
L2 cache N/A 768KB
DRAM GDDR3

102GB/s
GDDR5+ECC
144GB/s

experiments and analysis are reported in Section 5. We sum-
marize the related work in Section 6, and conclude this paper
in Section 7.

2. BACKGROUND
This paper focuses on performance optimization on Fermi

GPUs, we first introduce its architecture and highlight its
difference from the previous generation GT200. Since we
use DGEMM as a running through example, we also briefly
describe one of its implementation variants on the GPU as
well.

2.1 Fermi GPU Architecture
The GPU achieves its impressive computing power

through a large number of parallel SIMD engines. Fermi [11]
from NVIDIA is equipped with 14 or 16 SIMD engines
(448 or 512 cores), which offers 1.03Tflop/s single-precision
operations and 515Gflop/s double-precision operations. It-
s competitor Cypress GPU [1] from AMD/ATI has 20
SIMD engines and offers a peak performance of 2.72Tflop/s
single-precision operations and 544Gflop/s double-precision
operations. In order to facilitate users to programming,
NVIDIA abstracts a data parallel programming model called
CUDA [12]. In the CUDA model, one SIMD engine is re-
ferred to as a streaming multi-processor (SM). The basic
unit of execution flow in the SM is the warp, which is a
collection of 32 threads. One warp is scheduled to execute
in way of single-instruction multiple-thread (SIMT), which
means that the 32 threads execute the same instruction
while operating on different data in lockstep. One SM can
concurrently execute multiple warps which are grouped into
blocks. Each SM contains both per-block shared memory
and register files, which are shared by all threads in a block.
At the level of the CUDA model, these features are common
to GT200 and Fermi. However, at micro-architectural level
Fermi is a significant evolution from GT200.

Table 1 summarizes the comparison between GT200 and
Fermi. Fermi is an evolvement from GT200 architecture. It
improves throughput of double-precision floating-point op-
erations. For example, NVIDIA C2050 with 1.1GHz Fermi
chip provides a capability of 515Gflop/s (Note: all experi-
ments reported in this paper are conducted in this machine).
We highlight several important features related with appli-
cations’ performance:

• The size of shared memory is increased to 48KB while
it may be configured with 16KB. Usually, shared mem-
ory is used to exploit locality for a blocking algorithm.
Its capacity has a direct impact on the choice of block-
ing factors. In addition, the number of banks of shared

memory increases to 32 so that a bank conflict may al-
so happen for a warp of threads. These changes will
lead to a modification to the existing algorithms for
better performance.

• A cache hierarchy is added between DRAM and
streaming cores. Caches can amplify bandwidth and
reduce the penalty of global memory access. Unlike
shared memory, caches automatically exploit locality
by hardware. Since they cache parts of data from glob-
al memory, the overhead of a bad global memory access
pattern (i.e. uncoalesced access) is mitigated.

• There are two warp schedulers for each SM. That
means two instructions may be combined to be issued
at the same time. Every cycle, the two schedulers can
issue two warps, however, double precision instructions
cannot be dual-issued with other instructions.

• Another important feature is the width of memory op-
erations. In Fermi architecture, applications can use
wider load/store operations than 32-bits per thread.
It also supports both 64- and 128-bits memory opera-
tions. An intuitive idea is that we may take use of these
new instructions to improve memory access efficiency.
However, as discussed in the flowing context, the wide
data transfer instructions incur higher latency.

Algorithm 1
The size of thread block: vlx ∗ vly
Register: accum[rx ∗ ry], //rx ∗ ry is a factor of register blocking

rA[rx],rB[ry]
Shared memory: smA[bk][bm],smB[bk][bn]
///
accum[0 . . . rx][0 . . . ry]=0
load one bm ∗ bk block of A into smA[bk][bm]
load one bk ∗ bn block of B into smB[bk][bn]
synch
while (–K>0) {

for (ki=0;ki<bk;ki++) {
load one column of A in smA into rA[0 . . . rx]
load one row of B in smB into rB[0 . . . ry]
accum[0 . . . rx][0 . . . ry]+ = rA[0 . . . rx] ∗ rB[0 . . . ry]

} // end for

load one bm ∗ bk block of A into smA[bk][bm]
load one bk ∗ bn block of B into smB[bk][bn]
synch

} // end while

Merge accum[0 . . . rx][0 . . . ry] with bm ∗ bn block of C.

Figure 1: The basic framework of DGEMM routines

2.2 DGEMM on GPU
The BLAS specification [4] defines DGEMM as C :=

alpha ∗ A ∗ B + beta ∗ C, where A, B and C are m ∗ k,
k ∗n, m ∗n matrices, respectively. A straightforward imple-
mentation of DGEMM is three nested loops. It is well known
that a blocking algorithm often has higher performance on
a processor with a memory hierarchy because a blocking
matrix-matrix multiplication exploits more data reuse and
achieves a higher effective memory bandwidth.
There have been several published literatures describing

optimizing DGEMM on CUDA. Previous works [3, 5, 9, 15,
13, 14, 8] have pointed out that both latency and bandwidth
of global memory have a significant effect on DGEMM’s per-
formance. For a blocking DGEMM on the GPU, the three
matrices are partitioned into blocks of bm∗bk,bk∗bn,bm∗bn
and these blocks are laid out as grids of M ∗K,K ∗N ,M ∗N ,

where M = m/bm, N = n/bn, K = k/bk. The compu-
tation is done on a two-dimensional grid of thread blocks,
where one block of C is assigned to one thread block. That
is, there are M ∗ N thread blocks, each of which requires
fetching K blocks of A and B. Totally these fetches read
M∗N∗K∗bm∗bk+M∗N∗K∗bk∗bn = m∗n∗k∗(1/bm+1/bn)
words through the memory hierarchy. The blocking algo-
rithm results in a bandwidth reduction of 2/(1/bm+1/bn).
Furthermore, since blocks of both A and B are first loaded
into shared memory, data is reused multiple times, and the
penalty of global memory access is reduced.

The memory hierarchy on the GPU is abstracted to be
three levels: off-chip memory (global memory), on-chip
memory (cache or shared memory) and register files. The
bandwidth increases while the latency decreases through the
memory hierarchy from global memory to registers. There-
fore, a blocking algorithm usually contains two folds of
blocking. For the instance of our blocking DGEMM, we
refer to the level of blocking from global memory to shared
memory as shared memory blocking. Since there are gaps of
both bandwidth and latency between shared memory and
register file, another level of blocking sub-matrices in shared
memory is necessary to get reuse of the data in registers.
We call this level of blocking register blocking. Further, in
order to maximize efficiency of floating-point execution u-
nits, the utilization of shared memory and register files is
another key factor. For example, the data layout and access
patterns in shared memory should be carefully orchestrated
to avoid bank conflicts because the conflict results in ex-
tra latency. Additionally, the number of required registers
per thread should be balanced to maintain sufficient thread
occupancy to hide latencies.

As indicated by previous works [15, 13, 14], the above
concerns are non-trivial for a high performance DGEMM
implementation on GPU. We here describe a basic frame-
work of our DGEMM algorithm on GPU. Algorithm 1 in
Figure 1 is the two-levels of blocking algorithm on a mem-
ory hierarchy with global and shared memory. The matrix
A is transposed before the multiplication is actually per-
formed. The experimental results presented in the paper
include this overhead, which is about 1% of the total execu-
tion time. There are several undefined parameters (i.e. bm,
bn. . .) in pseudo-code. These parameters are directly relat-
ed to performance. In the next section we will show how to
select optimal values and thread mapping on Fermi.

3. IMPLEMENTATION CHOICES AND
ANALYSIS

In this section, we describe a DGEMM implementation
on Fermi based on our micro-benchmarking results. The
benchmark analysis identifies how to maximize efficiency
(i.e. bandwidth or bank conflicts) of both global and shared
memory. Although we achieved a comparable performance
to CUBLAS3.2, we present additional analysis of potential
optimizations.

3.1 Implementation
With respect to memory efficiency, both reduction of the

required memory bandwidth and optimal memory access
pattern should be determined. For the issue of memory
bandwidth, we formulate a performance model to estimate
the required memory bandwidth in both shared memory

and register blocking. Assume that there are two levels of
memory hierarchy, i.e. level 2 is bigger but of high latency
and level 1 is small but of low latency. Initially matrices
A,B,C are stored in level 2. Let’s denote DF and WB to
be floating-point operations per second and the word size
in bytes, respectively. A blocking algorithm loads blocks of
three matrices from level 2 into level 1. As described in the
previous section, a blocking algorithm reduces bandwidth
requirement by S = 2/(1/bm + 1/bn) times. The required
memory bandwidth RB is computed as:

RB = DF ∗WB ∗ 1/S = (DF ∗WB) ∗ (1/bm+ 1/bn)/2

where DF ∗ WB represents the required bandwidth for a
peak floating-point performance.
The optimization is reduced to a problem of minimiz-

ing RB since memory bandwidth is often limited. Given
a specific hardware architecture, the parameters DF ,WB
are constant. Thus, 1/bm+1/bn should be minimized. The
mathematical function reaches its minimal value when bm
is equal to bn (bm = bn). Therefore, a blocking algorithm
selects some appropriate values to satisfy:

RB = (DF ∗WB) ∗ (1/bn) < BW

where WB is the theoretical peak bandwidth.

Shared memory blocking Firstly, we select proper val-
ues for bandwidth reduction. The global memory
bandwidth of Fermi C2050 is 144GB/s. For double-
precision the required bandwidth is computed asRB =
515 ∗ 8 ∗ (1/bn) = 4120/bn GB/s. Thus, the values of
bn (or bm) are selected to satisfy 4120/bn < 144, that
is, bn = bm > 28. In order to identify some restric-
tions on achieving maximal bandwidth, we develop
a micro-benchmark program to measure the effective
bandwidth. Figure 2 plots the achieved bandwidth un-
der different modes. The experiment shows that block
size should be the largest one with multiple of 16 for
the highest bandwidth. Additionally, the CUDA pro-
gramming manual suggests memory is aligned to 512
bytes, which would make 64 double-precision values a
perfect fit.

0

20

40

60

80

100

120

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368 384 400 416 432 448 464 480 496

cudaMemcpy

1 byte

8 bytes

16 bytes

offset

GB/s

Figure 2: The effective bandwidth is affected by off-
set and width

Secondly, the optimal access pattern or thread-data
mapping is identified for maximizing global memory
efficiency. The benchmark program performs a device

to device memory copy, comparing different per-thread
word sizes while accessing memory from different off-
sets. The array occupies 480MB global memory (de-
vice memory) and is assigned to a grid of 30720 blocks
of 1024 threads. The plotted bandwidth is calculated
as the ratio of the copied memory size (480MB) to the
kernel execution time. As a reference, we also com-
pare our benchmark to the bandwidth test program in
the CUDA SDK. Figure 2 shows the achieved effective
bandwidth is determined by both offset and width. If
each thread copies one double (64-bits) or two doubles
(128-bits), performance is very sensitive to the offset.
The mode of 128-bits is slightly better than that of
64-bits. An important observation is that the effective
bandwidth is maximized if threads in a group of 16 all
use addresses in the same 128B-aligned region.

Based on the above observation, one column of A or
one row of B with 64 double words (512 bytes) may
be assigned 64 or 32 threads. For the initial ver-
sion presented in this section, we use 64-bits, since
the CUDA programming manual indicates that 128-
bit memory operations will result in at least a two-way
bank-conflict in shared memory. Bank conflicts result
in serialization that leads the 128-bits to be loaded in
two passes of 64-bits each.

Register blocking Using the same philosophy for shared
memory blocking, we first look for appropriate regis-
ter blocking sizes (rx,ry). According to the CUDA
programming manual, Fermi takes 2 cycles to issue an
entire warp which fits with a 16-wide SIMD and a 32-
wide warp. There are 32 banks, each with 4 bytes
width. Therefore, the shared memory bandwidth is
calculated as:

BWsm = 4 ∗ 32 ∗ 0.5 ∗ 1.15 ∗ 14 = 1030GB/s

where 1.15 means core frequency 1.15GHz, 0.5 is the
warp issue rate and means that it takes two cycles to
issue a warp, 14 is the number of SMs. Based on our
performance model, register block-ing sizes are select-
ed to satisfy:

RB = (DF ∗WB)∗(1/rx) = 4120/rx < BWsm = 1030

which means that rx(ry) should be 4 at least.

On the other hand, each SM has only 32768 register-
s. Our benchmarking experiments identify that there
should be at least two concurrent thread blocks of
192 threads (6 warps) on an SM to hide independent
instruction reissue latency. Furthermore, the max-
imum number of registers per thread is limited to
63. Since double precision values require 2 register-
s, and we require rx ∗ ry values for the accumulators
of the C matrix, and rx + ry values of A and B to
be multiplied, the choice of rx and ry should meet
2(rx ∗ ry + rx+ ry) < 63. If we assume rx = ry, then
rx = ry = 4 is the maximum blocking factor. If we
choose a larger blocking size there will not be enough
registers which will lead to a performance penalty due
to register spilling.

Until now, we have defined the values of parameters
bm = bn = 64,rx = ry = 4. Obviously, bk is de-
termined by the shared memory size on each SM. In

our configuration, each SM on Fermi has 48KB shared
memory and run 2 thread blocks at least. We choose a
maximal bk which satisfies 2∗2∗64∗ bk ∗8B < 48KB,
thus, bk = 16. Looking at Algorithm 1, the number of
registers of each thread is 48 = (rx ∗ ry + rx+ ry) ∗ 2
at least, where 2 means one double word occupying t-
wo 32-bits registers. To support more than two thread
blocks on one SM, the size of each thread block should
be less than 32768/(48 ∗ 2) = 341. Considering that
the minimal number of threads (512), we choose thread
block size to be 256 = 64 ∗ 4. For a block of size
bm ∗ bk = 64 ∗ 16, each thread needs to load 4 ele-
ments.

Loop:
load.64 rA[0],smA[k][threadIdx.x]; load.64 rA[1],smA[k][threadIdx.x+16];
load.64 rA[2],smA[k][threadIdx.x+32]; load.64 rA[3],smA[k][threadIdx.x+48];
load.64 rB[0],smB[k][threadIdx.y]; load.64 rB[1],smB[k][threadIdx.y+16];
load.64 rB[2],smB[k][threadIdx.y+32]; load.64 rB[3],smB[k][threadIdx.y+48];
dfma accum[0][0],rA[0],rB[0],accum[0][0]; dfma accum[0][1],rA[0],rB[1],accum[0][1];
dfma accum[1][0],rA[1],rB[0],accum[1][0]; dfma accum[1][1],rA[1],rB[1],accum[1][1];
dfma accum[0][3],rA[0],rB[2],accum[0][2]; dfma accum[0][3],rA[0],rB[3],accum[0][3];
dfma accum[1][2],rA[1],rB[2],accum[1][2]; dfma accum[1][3],rA[1],rB[3],accum[1][3];
dfma accum[2][0],rA[2],rB[0],accum[2][0]; dfma accum[2][1],rA[2],rB[1],accum[2][1];
dfma accum[3][0],rA[3],rB[0],accum[3][0]; dfma accum[3][1],rA[3],rB[1],accum[3][1];
dfma accum[2][2],rA[2],rB[2],accum[2][2]; dfma accum[2][3],rA[2],rB[3],accum[2][3];
dfma accum[3][2],rA[3],rB[2],accum[3][2]; dfma accum[3][3],rA[3],rB[3],accum[3][3];
Repeat Loop for 16 times (k=0,1,. . . 15)

Figure 3: A pseudo-code of the inner loop. load.64
is defined to be loading a 64-bit word from shared
memory to registers. dfma is the fused multiply-
and-add . rA, rB and accum are register variables,
smA and smB are shared memory addresses.

3.2 Analysis
Based on the analysis in the previous subsection, the

blocking algorithm is devised to maximize the utilization
of memory bandwidth. In this subsection we discuss a few
potential ways to improve performance. In Figure 5 the
blue line plots the performance of this baseline version. The
baseline program only achieves an efficiency of 54%, which is
worse than CUBLAS3.2. Looking at the inner loop with da-
ta for blocks of A and B in shared memory, the performance
is totally determined by the two nested loops in Figure 1.
Figure 3 lists pseudo-assembly code for the inner for-loop.
In each inner loop there are 8 memory instructions and 16
floating-point instructions. Totally there are 128 memory in-
structions and 256 floating-point instructions for all bk = 16
loops. In the outer while-loop there are 8 load instructions
and 8 store instructions that read both matrices A and B
from global memory, then store them into shared memory.

• Note that there are 8 global memory operations and
136 shared memory load/store operation. However,
the cost (latency) of global memory operations is about
100 times (see more details in Table 3 in Section 4.3)
more than that of shared memory operations so that
the 8 global memory operations take more time to fin-
ish. Therefore, the first priority is hiding the latency
of global memory operations. Note that there are two
levels of cache between global memory and register.
We may make use of software prefetching to hide the
long latency. One way is to load the next block in-
to register files just before current block is calculated.
Figure 4 describes the software prefetching strategy.
As shown by the green line in Figure 5, this optimiza-

Algorithm 2
The size of thread block: vlx ∗ vly
Register: accum[rx ∗ ry], //rx ∗ ry is a factor of register blocking

rA[rx],rB[ry],nrA[rx],nrB[ry]
Shared memory: smA[bk][bm],smB[bk][bn]
///
accum[0 . . . rx][0 . . . ry]=0
load one bm ∗ bk block of A into smA[bk][bm]
load one bk ∗ bn block of B into smB[bk][bn]
synch
while (–K>0) {

prefetch one bm ∗ bk block of A into nrA[rx]
prefetch one bk ∗ bn block of B into nrB[ry]
for (ki=0;ki<bk;ki++) {

load one column of A in smA into rA[0 . . . rx]
load one row of B in smB into rB[0 . . . ry]
accum[0 . . . rx][0 . . . ry]+ = rA[0 . . . rx] ∗ rB[0 . . . ry]

} //end for

store nrA[rx] into smA[bk][bm]
store nrB[ry] into smB[bk][bn]
synch

} //end while

Merge accum[0 . . . rx][0 . . . ry] with bm ∗ bn block of C.

Figure 4: The algorithm with software prefetching
in registers. The red texts highlight the changes
(the same way is used in Algorithm 3)

tion improves the efficiency to 57%, which is very close
to the efficiency of CUBLAS3.2 (red line).

0

50

100

150

200

250

300

350

cublas3.2

Algorithm2

Algorithm1

GFLOPS

the size of matrices (M=N=K)

Figure 5: The performance of our initial DGEMM
routines

• However, we note that a disadvantage of Algorithm2
in Figure 4 is the use of extra registers, i.e. addi-
tional 8 registers are temporarily used to store the
next block of matrices A and B. The requiremen-
t of more registers leads to register spilling to local
memory. Like global memory, local memory is al-
so cached on Fermi. By profiling the execution, we
compare the number of local memory access between
optimization code (Prefetching) and CUBLAS3.2 in
Figure 6. CUBLAS3.2 has no local memory access
while there are amount of local memory access in our
code. The analysis implies an optimization to im-
plement the software prefetching strategy with as less
register as possible.

• A rule of thumb tells us that the floating point

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

960 1152 1344 1536 1728 2112 2496 2880 3264 3648

store

load

size of matrices (M=N=K)

#local memory access

Figure 6: The number of local memory accesses

Table 2: Latency of floating-point load instructions.
It excludes the latency of two independent instruc-
tion reissues, each of which takes 6 cycles (reissue
latency)

Instruction ld.32 ld.64 ld.128
Latency 26 38 46

throughput of an application largely depends on the
percentage of the floating point instructions. This
is especially true on Fermi since the peak instruction
throughput is equal to the peak floating point through-
put, thus the floating point efficiency of an application
is limited by the percentage of floating point instruc-
tions. The ratio in Algorithm 1 is 256/(128 + 8 + 8 +
256) = 64%, which is the upper bound it can reach.
Both CUDA3.2 and our optimized routine reach at
about 58% and almost approach this theoretical value.

Note that CUDA3.2 on Fermi supports 128-bits
load/store operations. Obviously, the use of 128-
bits load/store instructions will increase the ratio of
floating-point operations to 256/(64 + 4 + 4 + 256) =
78%, which means that we may achieve 78% efficiency
of peak performance. However, CUDA programming
manual points out that 128-bits load/store operations
always result in at least 2-way conflicts in shared mem-
ory. We write a micro-benchmark program to measure
latency of load instructions with different width. Ta-
ble 2 summarizes the latency of each type of instruc-
tions. Due to long latency, the next step is to seek a
way to hide latency for the algorithm that uses 128-bit
load/store instructions.

4. OPTIMIZATION
The analysis above indicates that the use of 128-bit mem-

ory instructions improves the theoretical efficiency from 64%
to 78%. In this section we present an aggressively optimized

DGEMM algorithm, which combines both software prefetch-
ing without usages of extra registers and 128-bits load/store
instructions. The challenges are no extra register require-
ment for prefetching and minimal effect of longer latency
caused by 128-bits memory operations in shared memory.
We first describe the optimizations at the level of shared
memory blocking in section 4.1 and 4.2. The strategies
include data layout, thread mapping and double-buffering.
Then we focus on improving the second level of register
blocking by a careful instruction scheduling in section 4.3.

4.1 Data-Thread Mapping
The use of 128-bits memory operations leads to anoth-

er different data-thread mapping. As discussed before, two
warps load A/B’s one column/row of length 64 (bm or bn)
and each thread loads one 64-bit double word. If the 128-
bit load instructions are used, we only need 32 threads (one
warp), each thread loading two doubles (128-bits). Thus
we change the thread block of 64 ∗ 4 to 32 ∗ 8. Figure 7
depicts the shape of data-thread mapping using two modes
of memory operations. The left picture shows the process
of reading the data block of 64 ∗ 16 from global memory to
shared memory using 64-bit load operations. The right one
is the counterpart using 128-bit load operations.

Assume that matrices are stored in global memory with
column-wise layout, but the blocks are stored in shared
memory with row-wise layout. As shown in Figure 7, each
thread in the 64-bit mode issues four load/store instruc-
tions to fetch data while one in the 128-bit mode issues
two load/store instructions for a block of 64 ∗ 16. For ex-
ample, by issuing four 64-bits memory instructions, thread
0 . . . 63 fetch columns 0, 4, 8, 12 (the blue columns), thread
64 . . . 127 fetch columns 1, 5, 9, 13 (the dark red columns),
thread 128 . . . 191 fetch columns 2, 6, 10, 14 (the red column-
s), thread 192 . . . 255 fetch columns 3, 7, 11, 15 (the yellow
columns). In shared memory each column of 64 elements
(64-bit double words) is stored as a row, which is con-
tiguously accessed by a column of 64 threads. The right
picture illustrates the corresponding mapping with 128-bit
memory operations. Thread 0 . . . 31 fetch columns 0, 8 (the
blue columns) with two 128-bit memory instructions, thread
32 . . . 63 fetch columns 1, 9 (the dark red columns). In the
same way, each column of threads fetches two columns (the
same color) by issuing two 128-bit memory instructions.

4.2 Double-Buffering
If we abstract Fermi’s memory hierarchy to be two lev-

els composed of global memory and shared memory, it is
very similar to other many-core architectures like IBM Cel-
l and IBM Cyclops64 with explicitly software controlled
memory architecture. It is proven that software pipelining
using double-buffers in the low latency memory is an effi-
cient method to overlap computation with communication
through the memory hierarchy.

In order to implement a double-buffering strategy, we split
the data block of 64 ∗ 16 into two halves of 64 ∗ 8. When the
first half is being used to compute matrix C, the instructions
of fetching the second half are issued. The thread scheduler
is responsible for overlapping computing with memory op-
erations. The double-buffering algorithm is outlined in Fig-
ure 8. In the pseudo-code we map smA/B[0 . . . bk/2−1][bm]
to buffer 0 in Figure 7 and smA/B[bk/2−1 . . . bk−1][bm] to
buffer 1. Within the while-loop, the grouped instructions are

…

…

0

1

31

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

…

0

1

63

62

… …

…
…
…

…

0

…

…

… …

…
…
…

…

…

0

1

7

1 31

3

4

2

3

4

5

6

0

1

7

2

3

4

5

6

…

…

0
… 0

1

1 3 4 62 63

2

3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

buffer 0

buffer 1

global

memory

shared

memory

hared

memory

global global

memory

0

1

63

62

.

.

.

64

65

127

126

.

.

.

192

193

255

254

.

.

.

0

1

31

30

.

.

.

32

33

63

62

.

.

.

224

225

255

254

.

.

.

thread block

64-bits load/store 128-bits load/store

LD/ST.64 LD/ST.128

…

…

…

…

…

…

…

…

…

…

…

…

…

…

0

1

2

3

…

…

…

0

1

2

3

…

…

…

0

1

2

3

…

…

…

…

Figure 7: Data-thread mapping for data transfer
between global memory and shared memory. This
picture is split into two parts by the dashed line.
The left part illustrates the mapping in Algorithm
2 using 64-bit memory operations. The right one il-
lustrates the mapping in Algorithm 3 using 128-bit
memory operations

separated by synchronization into memory and computing
operations. Since they operate on different shared memo-
ry buffers, memory operations can proceed in parallel with
computing. Without data dependency, there is further room
for instruction scheduling optimizations to hide memory la-
tency.
Comparing with Algorithm 2 in Figure 4, the new algo-

rithm does not use an extra register to implement double-
buffering strategy. In fact, one significant change is the use
of 128-bits memory operations with longer latency. Besides,
in order to make sure that data in the next block is to-
tally loaded into shared memory before computation, the
double-buffering forces us to use one more synchronization
instruction in the while-loop. Obviously, in addition to 128-
bit load/store instructions, the extra synchronization results
in additional latency. Since the major penalty is extra laten-
cy, we therefore believe that there exists room for optimizing
instruction scheduling to hide these latencies.

4.3 Instruction Scheduling
The while-loop in Algorithm 3 occupies most of the execu-

tion time. Our instruction scheduling focuses on this section
of code. Before the algorithm for scheduling instructions is
detailed, we first figure out the instruction mix for executing
this code.
Table 3 summarizes the instruction mix. As explained

before, each thread loads one element (quad-word. In the
following context, we refer to one element as 128-bits) from
global memory to one of two buffers in shared memory (see
lines 6-7,14-15 in Algorithm 3). Since there are no memory-
memory instructions, one data movement operation is trans-
lated into two memory instructions: one load (ld.gm.128)
from global memory to registers and one store (st.sm.128)
from registers to shared memory. For each while-loop, four
memory instructions are issued to fill the double buffers.

Algorithm 3
The size of thread block: vlx ∗ vly
Register: accum[rx ∗ ry],//rx ∗ ry is a factor of register blocking

rA[rx],rB[ry]
Shared memory: smA[bk][bm],smB[bk][bn]
///
1.accum[0 . . . rx][0 . . . ry]=0
2.load one bm ∗ bk/2 block of A into smA[0 . . . bk/2 − 1][bm]
3.load one bk/2 ∗ bn block of B into smB[0 . . . bk/2 − 1][bn]
4.synch
5.while (--K>0) {
6. load one bm ∗ bk/2 block of A into smA[bk/2 . . . bk − 1][bm]
7. load one bk/2 ∗ bn block of B into smB[bk/2 . . . bk − 1][bm]
8. for (ki=0;ki<bk/2;ki++) {
9. load a col of A in smA[0 . . . bk/2 − 1][bm] into rA[0 . . . rx]
10. load a row of B in smB[0 . . . bk/2 − 1][bn] into rB[0 . . . ry]
11. accum[0 . . . rx][0 . . . ry]+ = rA[0 . . . rx] ∗ rB[0 . . . ry]
12. } //end for
13. synch
14. load one bm ∗ bk/2 block of A into smA[0 . . . bk/2 − 1][bm]
15. load one bk/2 ∗ bn block of B into smB[0 . . . bk/2 − 1][bn]
16. for (ki=bk/2;ki<bk;ki++) {
17. load a col of A in smA[bk/2 . . . bk − 1][bm] into rA[0 . . . rx]
18. load a row of B in smB[bk/2 . . . bk − 1][bn] into rB[0 . . . ry]
19. accum[0 . . . rx][0 . . . ry]+ = rA[0 . . . rx] ∗ rB[0 . . . ry]
20. } //end for
21. synch
22.} //end while
23.Merge accum[0 . . . rx][0 . . . ry] with bm ∗ bn block of C.

Figure 8: The algorithm with double-buffering s-
trategy

Now let’s check the two inner iterations for each half buffer.
In every ki-loop, each thread reads two elements of A and
two elements of B into registers, then computes a four-by-
four sub-block of C. The memory operations are composed
from 4 load instructions (ld.sm.128) in shared memory, and
the computing operations from 16 floating-point instruction-
s (dfma). Totally, there are 64 ld.sm.128 instructions and
256 dfma instructions for all bk = 16 loops. Additionally,
we need 10 integer instructions and one branch instruction
for address calculation and loop control.

In order to facilitate to scheduling sequence of instruction
execution, we measure pipeline latency of the instructions
used in the while-loop. Table 3 lists the instruction laten-
cies. Due to data dependency, we classify latency into two
types: read-after-write (RAW) and write-after-read (WAR).
For example, assume that instruction y depends on instruc-
tion x, the RAW latency is the number of cycles from the
time instruction x is issued to the time instruction y that
reads the content of a register written by x can be issued.
The WAR latency is the number of cycles from the time
instruction x is issued to the time instruction y that writes
the content of a register read by x can be issued.

The execution of an instruction stream is scheduled based
on the measured latencies. Given a sequence of instruction-
s, we scan through the code, and for each instruction, we
calculate how long it takes to make the values of registers
available. For an instance of ld.gm.128 r2,[r1] instruction,
the values of registers r2,r3,r4,r5 are available after it is
issued for several hundred cycles. In our scheduling al-
gorithm we refer to this latency as an effective time of a
register (i.e. r2’s effective time is 332∼1000 cycles, depend-
ing on whether data is cached or not). Thus, we dynamically
construct two map tables last raw and last war to record
the register name and its effective time for each instruction
(i.e. last raw[r2] = 1000). At the same time, we track

Table 3: Instruction mix in each iteration of the
while-loop. The “integer” contains addition and
branch instructions

inst. counts ratio(%) RAW latency WAR latency
ld.gm.128 4 1.17 332∼1000 46
ld.sm.128 64 18.76 46 46
dfma 256 75.07 24 N/A
integer 13 3.80 18 N/A

the accumulated execution time (tcurr) until the current
instruction is being scheduled. The registers of the curren-
t instruction are checked if they are in either last raw or
last war. If they are in neither table, its stall time for is-
sue is zero because there is no data dependence. Otherwise,
if one of the register hits in either one of two tables, the
stall time of the current instruction for issue is calculated
as the difference between the effective time and curren-
t time. For example, if instruction st.sm [smA],r2 after
ld.gm.128 r2,[r1] is currently scanned, its stall time equal-
s to last raw[r2] − tcurr. For instance, assume that there
are four independent instructions between ld.gm and st.sm.
Note that each of these four independent instructions has a
6-cycle no-stall issue-to-issue latency, the observed latency
of ld.gm to st.sm (or say the extra number of cycles st.sm
stalls) is 1000− (tcurr = 4 ∗ 6+6) = 970 cycles (st.sm has a
6-cycle latency even without RAW delay). The objective of
instruction scheduling is to minimize the accumulated stall
time of all instructions.

//threadIdx.x=0. . . 31
//Loop 0:
ld.sm.128 rA[0],smA[0][threadIdx.x];// for loop 0
ld.sm.128 rB[0],smB[0][threadIdx.x];// for loop 0
ld.sm.128 rB[2],smB[2][threadIdx.x];// for loop 0
dfma accum[0][0],rA[0],rB[0],accum[0][0]; dfma accum[0][1],rA[0],rB[1],accum[0][1];
dfma accum[1][0],rA[1],rB[0],accum[1][0]; dfma accum[1][1],rA[1],rB[1],accum[1][1];
ld.sm.128 rA[2],smA[2][threadIdx.x]; // for loop 0
dfma accum[0][3],rA[0],rB[2],accum[0][2]; dfma accum[0][3],rA[0],rB[3],accum[0][3];
dfma accum[1][2],rA[1],rB[2],accum[1][2]; dfma accum[1][3],rA[1],rB[3],accum[1][3];
ld.sm.128 rA[0],smA[0][threadIdx.x]; // for loop 1
dfma accum[2][0],rA[2],rB[0],accum[2][0]; dfma accum[2][1],rA[2],rB[1],accum[2][1];
dfma accum[3][0],rA[3],rB[0],accum[3][0]; dfma accum[3][1],rA[3],rB[1],accum[3][1];
ld.sm.128 rB[0],smA[0][threadIdx.x]; // for loop 1
dfma accum[2][2],rA[2],rB[2],accum[2][2]; dfma accum[2][3],rA[2],rB[3],accum[2][3];
dfma accum[3][2],rA[3],rB[2],accum[3][2]; dfma accum[3][3],rA[3],rB[3],accum[3][3];
//Loop 1:
ld.sm.128 rA[0],smA[0][threadIdx.x]; //for loop 1
dfma accum[0][0],rA[0],rB[0],accum[0][0]; dfma accum[0][1],rA[0],rB[1],accum[0][1];
dfma accum[1][0],rA[1],rB[0],accum[1][0]; dfma accum[1][1],rA[1],rB[1],accum[1][1];
ld.sm.128 rA[2],smA[2][threadIdx.x]; // for loop 1
. . . //omitted other instructions for space because they’re
cloned from loop 0

Figure 9: Instruction scheduling of the inner loop

A general algorithm for instruction scheduling is out of
scope of this paper. In this section, we present a specific
algorithm for arranging the order of instruction execution
in while-loop of Algorithm 3. Initially, lines 6-21 of Algo-
rithm 3 are directly transformed into assembly instructions
described in Table 3 and then the two inner for-loops are
completely unrolled.
At first, we re-arrange the sequence of instructions of each

inner for-loop. Figure 9 illustrates an example of instruc-
tion re-ordering for the first two loops in the inner for-loop.
For each loop there are 4 ld.sm.128 instructions followed by
16 dfma instructions. Intuitively the execution cannot be
re-ordered due to data dependencies in registers rA[0 . . . 3]
and rB[0 . . . 3]. However, as shown in Figure 9, registers
rA[0],rA[1] are free after the first 8 dfma instructions are ex-

ecuted, registers rB[0],rB[1] are free after the first 12 dfma
instructions are executed. This observation indicates that
it is feasible to search proper points to insert these load in-
structions in unrolled loop for minimizing stall time because
there are 8 possible points at most for searching. After that,
we added scheduling of the 4 load/store instructions that
load data from global memory into shared memory. Thanks
to no data dependence between these instructions and the
other 160 instructions bounded by synchronization, we can
exhaustively search for the best points among the 160 points
for these 4 instructions. Finally, after the second one of t-
wo st.sm.128 instructions is scheduled, we search an insert
point starting from this store instruction for synchronization
instructions.

5. EXPERIMENTAL RESULTS AND
ANALYSIS

The proposed optimization strategies are involved with
the exact selection and scheduling of instructions, they
cannot be achieved at the level of either CUDA C or P-
TX language because the programs of CUDA C/PTX are
transformed to the native machine instructions by com-
piler. With NVIDIA’s internal tool-chain, we first im-
plemented Algorithm 3 using Fermi’s native machine lan-
guage on NVIDIA Tesla C2050. Thanks to the regular
access pattern in matrix, the memory operations are im-
plemented by the corresponding texture memory instruc-
tions. In this section we first report our achieved perfor-
mance with the proposed optimizations, then discuss some
insights on general optimization and architectural impact.
The benchmark programs are put in a public web site:
http://asl.ncic.ac.cn/dgemm/dgemm nv.html.

5.1 Performance
We initially expect that both double-buffering and in-

struction scheduling derive the performance improvement
because these strategies save the use of registers and hide
latency as well. Figure 10 reports their overall improvement
of performance. It plots performance of our final version of
DGEMM routine. Comparing with CUDA3.2, it improves
floating-point performance by 20%, and reaches a peak of
362Gflop/s or floating-point efficiency of 70%. Although a
combination of our optimization strategies indeed improves
performance, a major premise of this success is that we have
to implement the optimized program in assemble code by
hand. In fact, as indicated by our analysis before, the per-
formance bottleneck of DGEMM routine is latency after we
choose an optimal implementation of blocking algorithm. E-
specially, the use of 128-bits memory operations makes the
problem even worse. However, our optimization strategies
mitigate the effect of instruction latency and improve per-
formance.

We are also interested in figuring out which part is the
main source of performance improvement. Note that the
instruction scheduling algorithm actually finds proper in-
sert points (before or after some floating-point arithmetic
instruction) for all memory instructions. Our scheduling
strategy is composed of two major steps: insert memory
instructions of loading data in shared memory (the inner for-
loop) and insert memory instructions of loading data from
global memory then storing to shared memory. Therefore, in

0

50

100

150

200

250

300

350

400

Algorithm3

CUBLAS3.2

GFLOPS

the size of matrices (M=N=K)

Figure 10: The performance of our final version of
DGEMM

the experimental evaluation, there are four versions written
in assemble code:

• version 1: Based on Algorithm 3, we modify it to only
use 128-bits memory operations and do not implement
double-buffering. The implementation eliminates one
synchronization instruction in while-loop.

• version 2: Algorithm 3 is directly translated into as-
semble code without any instruction scheduling opti-
mization.

• version 3: Based on version 2, the instructions in all
inner for-loops are reordered by instruction schedul-
ing optimization. That is, we only optimized latency
hiding for shared memory accesses.

• version 4: Based on version 3, we further optimized
the latency hiding for global memory access using in-
struction scheduling optimization. This is our final
version.

Figure 11 plots an incremental improvement of the four
versions. The green bars represent the performance of
CUBLAS3.2. From the experiments, we conclude several
observations:

• The cache hierarchy newly introduced by Fermi miti-
gates the overhead of register spilling. A fact we have
to note is that the assembly codes of all the four ver-
sions use less than 63 registers by carefully scheduling
instructions for more register reuse. However, not to
speak of better than CUBLAS3.2, version 1 does not
achieve better performance than Algorithm 2 which
uses more than 63 registers. Although register spilling
results in local memory accesses, unlike the previous
GT200, Fermi uses cache to hold most of local memo-
ry accesses. Therefore, the latency caused by register
spilling may not be a main performance bottleneck
to some extent. That is why the double-buffering s-
trategy without extra register just slightly improves
performance (see the blue bars for version 2 in Fig-
ure 11).

0

50

100

150

200

250

300

350

400

3
8

4

5
1

2

6
4

0

7
6

8

8
9

6

1
0

2
4

1
1

5
2

1
4

0
8

1
6

6
4

1
9

2
0

2
1

7
6

2
4

3
2

2
8

1
6

3
2

0
0

3
5

8
4

3
9

6
8

cublas3.2

version 1

version 2

version 3

version 4

size of matrices (M=N=K)

GFLOPS

Figure 11: The incremental improvement by the op-
timization strategies. They are also compared to
CUBLAS3.2

• The latency of global memory access is always the first
class of citizenship under the consideration of perfor-
mance optimization. The comparison of version 3 and
version 4 shows that scheduling global memory opera-
tions is the main source of performance improvement.
Version 3 improves the peak performance of floating-
point by 5% comparing to CUBLAS3.2 while version
4 further improves the peak performance by 15% com-
pared to version 3.

As mentioned before, the ratio of double-precision
floating-point instructions determines the upper bound of
performance. The instruction mix in Table 3 shows that the
theoretical efficiency of our algorithm on Fermi is 75%. We
achieve a peak efficiency of 70%, which is close to the limita-
tion. For example, although there are two warp schedulers,
double-precision instructions cannot be combined with any
other instructions for dual issue. This is the reason why
the theoretical performance is estimated only by the ratio
of double-precision floating-point instructions. Surprising-
ly the scheduling of global memory operations contributes
the most to our performance improvement. We thought
the compiler should perform well in this case because it is
a significant bottleneck. Algorithm 2 with 64-bit memo-
ry operations approaches its performance limitation of 64%
without any special optimization to its assembly code by
hand. It is another story for Algorithm 3 with 128-bit mem-
ory operations. This indicates that there may be room for
improvements in the compiler for dealing with 128-bit mem-
ory operations.

5.2 Discussion on General Optimization
In this paper we only present the optimization of DGEMM

on Fermi. The proposed optimization strategies are closely
related to Fermi’s hardware architecture. However, we note
that the ideas are adaptive to other dense matrix operations
and performance critical libraries as well. As a matter of
fact, DGEMM has been extensively used as a motivating
example or benchmark for micro-architecture and compiler
research since it lays stress on both computing capability

and memory access. A retrospect to the previous research
shows that many optimizations on DGEMM were easily ap-
plied to other applications. It is expected that some ideas
may be generalized and adopted by either hand or compiler
for optimizing math libraries.
Firstly, a key observation in this work is the use of 128-

bit memory instructions. The wider memory instructions
result in less memory instructions in the kernel loop so that
the peak floating-point efficiency is potentially improved, i.e.
from 64% to 75% for DGEMM’s efficiency. Such wide mem-
ory operations can be used in more scientific and engineer-
ing applications because most of them exhibit contiguous
memory access pattern as that in DGEMM. The compil-
er can easily provide an option to users for choosing such
wider memory operations, or automatically make the opti-
mal choice for users.
Secondly, we implement the double-buffering strategy in

shared memory instead of registers. It has been proven that
double-buffering is a general approach to hide long memory
latency. CUBLAS3.2 adopted MAGMA’s idea to implemen-
t double-buffering (or software prefetching) by using more
registers. In Figure 11 version 2 represents our double-
buffering algorithm in shared memory. The experimental
results show that our implementation is a little better than
CUBLAS3.2. In fact, due to the long latency of 128-bits
memory instructions, version 1 is worse than CUBLAS3.2
in some cases. The improvement of version 2 indicates that
double-buffering in shared memory provides more benefits
thanks to less pressure of register usages.
Finally, the experiments show that the major performance

improvement is achieved by instruction scheduling. The
scheduling strategy is totally derived from instructions de-
pendency, which is not specific to DGEMM. Although we use
a method of exhaustion to search the optimal scheduling, we
argue that the idea may be applicable to general optimiza-
tions because small piece of code often occupy most of the
execution time in a lot of scientific and engineering applica-
tions. As an alternative way, auto-tuning techniques [3, 17]
can be taken to find a better scheduling order. The instruc-
tion scheduling optimization requires support of assemble
language.
Note that the experience on optimizing DGEMM shows

that only use of 128-bit memory instruction does not im-
prove performance in practice. It has to be combined
with other latency hidden strategies including both double-
buffering and instruction scheduling.

5.3 Architectural Impact
Based on our optimization and performance evaluation,

we summarize several possibilities for improving the GPU
architecture for higher performance on DGEMM and other
dense linear algebra operations:

• Increasing the number of registers per thread. Al-
though the overhead of register spilling may be mit-
igated by the cache hierarchy, the theoretical limit
of performance based on the ratio of floating-point
instructions can be increased with more registers be-
cause of larger blocking in registers. For example,
our algorithm uses a register blocking of 4x4, the ra-
tio of floating-point instructions within the inner-loop
is 16/(16 + 4) = 80% (or 16/(16 + 8) = 66% using
64-bit memory operations). If the blocking size in-
creases to 8x8, for example, the ratio is increased to

64/(64+8) = 88% (or 64/(64+16) = 80% using 64-bit
memory operation).

• Increasing shared memory bandwidth. In fact, the
shared memory bandwidth relative to floating point
throughput has decreased from GT200 as well. Block-
ing is proven to be an efficient way to reduce the
bandwidth requirement. However, larger blocking puts
more pressure on the register file. Therefore, an in-
crease in shared memory bandwidth will require lower
blocking factors in registers.

• Increasing instruction throughput. The ability to per-
form memory and math operations simultaneously
would allow our algorithms to reach much closer to
the theoretical peak performance. We have seen this
trend already with the GTX460 GPU which can issue
twice as many instructions per clock compared to the
original Fermi design.

• More efficient instruction scheduler. We have shown
that a careful instruction scheduling by hand can im-
prove performance. However, we are limited to instruc-
tion ordering within a warp. The actual instruction-
s that are executed depend largely on the hardware
scheduling of warps. Thus, there may be room for im-
provements either by more efficient hardware, or by
software if the scheduler were made programmable.

6. RELATED WORKS
Since the GPU provides powerful capability in floating-

point computing, it is not surprising that there have been
a lot of works on optimizing applications on the GPU [10].
DGEMM is a compute intensive kernel in high performance
computing applications. It is also an important bench-
mark for high performance processors. Volkov et.al. [15]
presented a fast implementation on G80 architecture. A
blocking algorithm was used to exploit locality in shared
memory. They also presented detailed benchmarks of the
GPU memory system, kernel start-up costs, and arithmetic
throughput. However, we present a performance modeling
and a detailed analysis on the rationality of choosing an
optimal blocking factor, and an experience on instruction
scheduling as well. Nath et.al. [9] has developed a dense
linear algebra library MAGMA for heterogeneous architec-
tures of multi-core+GPU. The library contains a DGEMM
routines optimized for Fermi. MAGMA adopts a similar
idea of double-buffering by prefetching data into extra reg-
isters instead of shared memory. MAGMA’s performance
is almost the same as CUBLAS3.2, but is lower than ours.
Ryoo et.al.’s work [13, 14] provided some valuable findings
on ratio of floating-point instructions and tiling. They dis-
cussed tiling algorithms under the constraint of registers per
thread, but not memory bandwidth and instruction latency.
Nakasato [8] implemented a fast DGEMM on ATI Cybress
GPU. We share the common idea of blocking algorithm, but
the micro-architecture is different between ATI Cybress and
Nvida Fermi, leading to different optimization strategies.
There are several works on auto-tuning DGEMM [7, 6] for
searching the optimal blocking algorithm on the GPU. Our
findings on optimal blocking and instruction scheduling may
be complements to them.

An important part of this work is that we develop a set
of micro-benchmarks to identify Fermi’s micro-architecture

features. Wong et.al. [16] performed a comprehensive bench-
marking work on GT200. However, we further use the
benchmarking results to guide the selection of optimization
strategies. Our work illustrates an example of connecting
micro-benchmarking to program optimization. The experi-
ence may be an optimization guideline for other applications.

7. CONCLUSIONS
We have presented the fastest implementation of DGEM-

M on a single Fermi GPU. The optimized DGEMM routine
attains 70% of peak speeds, which is higher than the 58%
of peak speeds attained by CUBLAS3.2. The performance
boost is achieved by carefully chosen optimizations to match
the capabilities of the hardware. For example, a specif-
ic blocking algorithm is adaptive to parameters (capacities,
banks, bandwidths) of both global memory and shared mem-
ory for wider memory operation instructions. Both double-
buffering and an aggressive instruction scheduling are used
to hide memory latencies. Our micro-benchmarking results
also disclose some interesting architectural features, i.e. a
rule to maximize DRAM efficiency and latencies of 128-bits
memory instructions.
Actually, this work shows an example of how to use

the newly introduced wider memory operations (128-bits
load/store) for program optimization. There is a tradeof-
f to use these wider memory operations. They can reduce
the number of load/store instructions, but incur more la-
tency. This tradeoff puts a heavy burden on instruction
scheduling. The experimental results in this paper indicate
that either current CUDA compiler or warp scheduler (or
both) is not well ready for this new feature. We also point
out that the limitation for issuing double-precision floating-
point arithmetic instructions really limits the performance
of floating-point intensive programs like DGEMM.

8. REFERENCES
[1] AMD. ATI Stream Computing OpenCL Programming

Guide, rev1.05, August 2010.

[2] E. Anderson, Z. Bai, C. Bischof, J. W. Demmel, J. J.
Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. C. Sorensen. LAPACK: A
portable linear algebra library for high-performance
computers. Technical Report 20, LAPACK Working
Note, May 1990.

[3] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes,
A. Petitet, R. Vuduc, R. Whaley, and K. Yelick.
Self-adapting linear algebra algorithms and software.
In Proceedings of the IEEE, volume 93, pages 293–312,
2005.

[4] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S.
Duff. A set of level 3 basic linear algebra subprograms.
ACM Trans. Math. Softw., 16:1–17, March 1990.

[5] K. Goto and R. A. v. d. Geijn. Anatomy of
high-performance matrix multiplication. ACM Trans.
Math. Softw., 34:12:1–12:25, May 2008.

[6] C. Jang. Gatlas gpu automatically tuned linear
algebra software. http://golem5.org/gatlas/.

[7] Y. Li, J. Dongarra, and S. Tomov. A note on
auto-tuning gemm for gpus. In Proceedings of the 9th
International Conference on Computational Science:
Part I, ICCS ’09, pages 884–892, Berlin, Heidelberg,
2009. Springer-Verlag.

[8] N. Nakasato. A fast gemm implementation on the
cypress gpu. SIGMETRICS Perform. Eval. Rev.,
38:50–55, March 2011.

[9] R. Nath, S. Tomov, and J. Dongarra. An improved
magma gemm for fermi gpus. Technical Report 227,
LAPACK Working Note, July 2010.

[10] NVIDIA. Cuda Community Showcase.
http://www.nvidia.com/object/
cuda apps flash new.html.

[11] NVIDIA. Nvidia’s next generation cuda compute
architecture: Fermi. http://www.nvidia.com/object/
fermi architecture.html, 2009.

[12] NVIDIA. CUDA C Programming Guide, Version 3.2,
2010.

[13] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.
Stone, D. B. Kirk, and W.-m. W. Hwu. Optimization
principles and application performance evaluation of a
multithreaded gpu using cuda. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, PPoPP ’08, pages
73–82, New York, NY, USA, 2008. ACM.

[14] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S.
Baghsorkhi, S.-Z. Ueng, J. A. Stratton, and W.-m. W.
Hwu. Program optimization space pruning for a
multithreaded gpu. In Proceedings of the 6th annual
IEEE/ACM international symposium on Code
generation and optimization, CGO ’08, pages 195–204,
New York, NY, USA, 2008. ACM.

[15] V. Volkov and J. W. Demmel. Benchmarking gpus to
tune dense linear algebra. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08,
pages 31:1–31:11, Piscataway, NJ, USA, 2008. IEEE
Press.

[16] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi,
and A. Moshovos. Demystifying gpu microarchitecture
through microbenchmarking. In 2010 IEEE
International Symposium on Performance Analysis of
Systems & Software,, ISPASS ’10, pages 235–246,
2010.

[17] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua,
K. Pingali, and P. Stodghill. Is search really necessary
to generate high-performance blas? In Proceedings of
the IEEE, volume 93, pages 358–386, 2005.

