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Abstract. This paper presents a new technique to optimize locality of irregular
programs by leveraging parallelism on a massive many-core architecture – IBM
Cyclops64 (C64). The key idea is to achieve Just-In-Time Locality which ensures
that data are available locally for computation to use. The proposed percolation
model for Just-In-Time Locality moves data proactively close to the computation
and organizes the data layout such that locality is exploited effectively. The perco-
lation model opens a door for exploiting locality through parallelism, which is an
advantage of the future many-core architecture. We implemented the percolation
strategy in the context of two irregular applications on C64. Our experimental
results are very encouraging and we get an order of magnitude improvement in
performance of irregular applications. We also drastically improve the scalability
of the applications that we studied.

1 Introduction

Emerging future microprocessor chip technology unveils a new generation of many-
core chip architecture that may contain 100 to 1,000 processing cores. In order to im-
prove the performance and scalability of large-scale applications computer architects,
system software designers and application scientists are realizing that they must work
closely together to investigate how to exploit the computational power of such new
many-core architecture. At a high level there are two kinds of applications—“regular
applications” where data access and control flow follow regular and (statically) pre-
dictable patterns, and “irregular applications” where data access and control flow have
statically (and often even dynamically) unpredictable patterns. Many irregular applica-
tions are often implemented using complex pointer data structures such as graph and
queue, and recursive control flow is often used to traverse and manipulate such complex
pointer data structures. It is difficult and often impossible to capture the data access pat-
terns at compilation time for such applications. For architectures that support memory
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hierarchy, unpredicatable data access patterns often lead to higher off-chip memory ac-
cess latency, which in turn can degrade the performance and scalability of such irregular
applications.

The current threading library (e.g., Pthreads), a combination of compiler directives
and libraries (e.g., OpenMP) and optimistic parallelization [1, 2, 3] were not designed
to support programming for tolerating off-chip latency, or to handle efficient allocation
and movement of data across hierarchy levels. It is often the case that in the underline
thread execution model, a thread is enabled and activated as soon as all data and control
dependencies are satisfied. Such thread execution models may do well for regular ap-
plications, where there is an inherent memory locality in the application. Unfortunately,
irregular applications often do not have inherent memory locality and so the weaker
model often performs poorly.

In this paper we exploit several characteristics of IBM Cyclops64 (C64) architec-
ture [4] and its runtime threading model to drastically improve the scalability and per-
formance of irregular applications. Our runtime threading model consists of two phases:
(1) memory access phase and (2) computation phase. These two phases are orchestrated
using Just-In-Time Locality and percolation model in such a way that we can amortize
the latency of accessing non-local data across multiple hardware threads. The main
contributions of this paper are as follows:

– We highlight the basic notion of Just-In-Time Locality - that has been studied con-
ceptually in our past work on percolation model under the HTMT project [12, 14]
to improve and exploit data locality in irregular applications. We show how to in-
terleave computation and memory access such that a thread is enabled only when
all of its data, control, and locality constraints are satisfied. To hide the latency of
memory access we overlap and pipeline the computation phase and the memory
access phase across multiple cores or hardward threads.

– We describe percolation programming technique to optimize two important irregu-
lar applications—the betweenness centrality algorithm and the dynamic program-
ming algorithm.

– We have implemented our approach on C64 and using our approach we obtained
a performance improvement of 4-50 times for betweenness centrality and of 1-2
times for dynamic programming.

The rest of the paper is organized as follows: In section 2, we propose the percolation
programming technique in detail. Section 3 discusses how to program irregular program
with percolation. Section 4 evaluates the performance of applying percolation model to
two irregular applications – betweenness centrality and dynamic programming on a
many-core chip architecture. In section 5, we discuss the existing related techniques.
Finally, section 6 concludes this paper.

2 Percolation Model and Just-In-Time Locality

In this section we describe some of the key ideas behind our percolation model by
exploiting some of the key characteristics of C64 architecture [4].
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2.1 C64 Architecture

C64 is a many-core chip architecture that employs a large number of hardware thread
units (processing cores), half as many floating point units, (on-chip) SRAM memory
banks, an interface to the off-chip DDR SDRAM memory and bidirectional inter-chip
routing ports. The C64 chip has no data cache and features a three-level memory hier-
archy (Scratchpad memory, on-chip SRAM, off-chip DRAM). A portion of each thread
unit’s corresponding on-chip SRAM bank is configured as the scratchpad memory.
Therefore, the thread unit can access its own scratchpad memory with very low la-
tency through a “backdoor”, which provides a fast temporary storage to exploit locality
under software control. The remaining portion of each on-chip SRAM bank, together,
forms the on-chip global memory that is uniformly addressable from all thread units.
There are 4 off-chip memory controllers connected to 4 off-chip DRAM banks.

C64 incorporates efficient support for thread level execution. For instance, a thread
can stop executing instructions for a number of cycles or indefinitely; and when asleep
it can be woken up by another thread through the execution of a special instruction
(casing a direct hardware interrupt). All the thread units within a chip connect to a 16-
bit signal bus, which provides a means to efficiently implement barriers. C64 provides
no resource virtualization mechanism: the thread execution is non-preemptive and there
is no hardware virtual memory manager. The former means the OS will not interrupt
the user thread running on a thread unit unless the user explicitly specifies a termination
or an exception inside C64 chip that is visible to the programmer. From a programming
model perspective such non-preemptiveness implies that it is important not to stall an
execution of a thread once it is scheduled on to a hardware thread unit. In the rest of
this section we will describe our percolation model that avoids such unnecessary stalls
of running threads.

2.2 Percolation for Just-In-Time Locality

In our percolation threading model a thread has to satisfy two requirements before it
can be enabled and ready to run: (i) data/control dependencies have to be satisfied and
(ii) locality constraints have to be satisfied. The latter requirement essentially enforces
that all data referenced by a thread should be local before a thread can be scheduled
to run on a hardware thread unit. We represent a program as a directed acyclic task
graph, where each node is a task, and a direct arc between two nodes represents a
precedence relation between tasks. For regular programs, a user (or a compiler) can
often automatically identify computation and memory access tasks, and schedule them
such that the latency of memory accesses incurred by the memory access/movement
tasks are tolerated. But for an irregular program like graph traversal, it is often difficult
to automatically identify task level parallelism and their data access patterns to perform
such latency tolerant scheduling statically. One solution is to let the users explicitly
specify the task level parallelism. Recall that a necessary condition for a task to become
enabled is that all data required by a (computation) task have been produced, and all
control dependences are satisfied. In a task graph, a node s (i.e., a task) is enabled if all
its predecessor nodes have completed and the required data and control dependences
have be satisfied. We call a task that satisfies data and control dependence requirements
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as being logically enabled. In our percolation model it is not sufficient for a logically
enabled task to run. A logically enabled task often cannot immediately run since the data
may still be in off-chip memory hierarchy or in the local memory of other cores. We
introduce locality constraints in addition to data and control dependence requirements
to overcome the latency gap through memory hierarchy. We call a logically enabled
task as locality enabled if it also satisfies locality constraints. For a task to be locality
enabled all data referenced by the task should become local before a task can begin
execution. The locality requirement ensures that the corresponding code and data of
the candidate task are resident in the same level of memory hierarchy where it is to be
enabled.

C64 also supports explicit memory hierarchy and so we use multigrain parallelism
to improve performance and scalability of applications. Coarse-grained parallelism is
used to enable a thread at coarse-grain level where data and control dependencies are
satisfied, and fine-grain parallelism is used to enable a thread at fine-grain level when
locality constraint is satisfied. The coarse-grain tasks reflect logical parallelism in the
user program. It is easy to map each task to an independent thread (core) if the de-
pended data is available in a shared memory space. Our percolation model creates ad-
ditional fine-grain parallelism within each coarse-grain task. It is important to note that
our percolation-based multi-grain parallelism is different from conventional multi-grain
parallelism techniques that are used to combine task and data parallelism [5]. The fine-
grain parallel tasks in the percolation model are exploited as separating memory access
from computation operations within a coarse-grain task. The advantages of separating
memory from computation are: (1) in addition to the fine-grain parallelism, we can
also pipeline the different phases of memory access and computation tasks to hide the
overhead of memory access, and (2) it provides an opportunity to elaborate the mem-
ory access tasks so that they are aware of memory hierarchy and transform non-linear
memory access with high latency to linear memory access with low latency. A separate
memory access task may reorganize (gather) the dispersed references in advance in the
pipeline of tasks. Within memory hierarchy, the tasks for locality requirement may in-
volve either collecting the data toward the cores where the task is enabled, called inward
percolation, or sending/migrating the data away from the cores, called outward perco-
lation. A percolation task scheduler causes the data to meet the corresponding threads
just in time at the vicinity of the cores where the computation task is to be carried out.

2.3 Discussion

The key idea behind percolation model is to bring data close to computation just in
time so that the computation thread can run to completion. For non-preemptive thread
units such as in C64, it is important to reduce the number of stalls during execution.
In percolation model rather than delaying or suspending a thread during execution, we
avoid scheduling such threads that do not have locality constraints satisfied. Percolation
model is closely related to prefetching, except that in prefetching, prefetch instructions
are inserted within a thread that is ready to be scheduled, and the hope is that at the time
the thread needs the data it will be available for use. Often prefetching instructions are
either inserted too soon (in which case the prefetched data is evicted from the cache) or
too late. In both cases the corresponding thread will stall the (non-preemptive) thread
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unit on which it is running. Since C64 has no caches nor does it support preemptive
hardware thread units, delaying or suspending active threads or prefetching is not well
suited to improve performance and scalability of applications.

3 Percolation Programming

In this section, we discuss in detail two irregular applications (betweenness central-
ity with graph traversal in SSCA2 [6] and non-serial polyadic dynamic programming
(DP) [7]) and show how to program them for percolation. There are three parts to per-
colation programming: (1) Collect data from non-contiguous locations just in time to
obtain Just-In-Time Locality in the on-chip memory for the computation phase; (2)
Compute the relevant information based on Just-In-Time Locality on-chip data; and (3)
Finally, map the information thus computed back to off-chip memory. The first and last
phase form the memory tasks and are mapped to helper threads by the runtime sys-
tem. The second phase is the main computation phase that is mapped to a computation
thread. Due to space limitation, we only present the pesudo code of SSCA2. It is im-
portant to keep in mind that the memory tasks and computation tasks are pipelined by
the runtime system to reduce the critical path. Also, it is upto the programmer to create
coarse grain parallelism (that includes multiple computation tasks and memory tasks)
depending on what is being computed within the application.

3.1 Percolation Programming for SSCA2

In this section we describe our percolation programming for SSCA2. Recall that there
are two phases in SSCA2: the BFS phase (See Figure 1) and BT phase [6]. To simplify
the presentation we only describe the percolation programming for the BFS phase.The
first step in percolation programming is to identify the memory tasks. Let us denote the
set of the vertices that is being extended in the current queue (the ith level of BFS tree)
as Vi = {vi1, vi2, ..., vik}. Let Nj = {wj1, wj2, ..., wjkj}, 1 ≤ j ≤ k denote the neigh-
boring set of vertices of a vertex vij . According to the algorithm, the unvisited neighbor
vertices w (d[w] = −1) is added to the current queue and the vertices that is being
extended in the shortest path (d[w] = d[v] + 1) is added to the set of predecessor P [w].
Note that the layout of these Nj in the adjacency array may be non-contiguous and have
variable stride. Note that if we compact all the neighbors in one level into one large set:
UNi =

⋃
1≤j≤n Nj , the compacted non-contiguous memory region can be considered

as a contiguous linear array so that it is easy to partition it among parallel threads. In
our implementation, we do not explicitly perform such a compaction operation in the
off-chip memory, but inside we use the Just-In-Time Locality principle.

The inward percolation consists of computing the start address and size of the neigh-
boring vertices region in adjacency array of each vertex, and collecting neighboring
vertices that is dispersed in the off-chip memory address (adjacency array) into a con-
tiguous on-chip memory address. We also collect the corresponding elements in d, σ
into a contiguous on-chip memory address. Notice that there is a producer-consumer
relationship between the collection of neighboring vertcies and collection of d, σ. Also,
the memory references of d, σ are discrete because the distribution of the neighboring
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1 BFS ( i n t v ) {
2 i n t dv = d [ v ] ; / / l e n g t h o f t h e s h o r t e s t pa th
3 i n t s igmav = sigma [ v ] ; / / t h e number o f t h e s h o r t e s t pa th
4 f o r ( i = 0 ; i < NumEdges [ v ] ; i ++) {
5 w = A d j a c e n t [ i n d e x [ v ]+ i ] ;
6 i f ( d [w] < 0) {
7 d [w] = dv + 1 ;
8 s igma [w] = 0 ;
9 }

10 i f ( d [w] = dv + 1)
11 sigma [w] = sigmav + 1 ;
12 }
13 }

Fig. 1. The sequential BFS codes without percolation

vertices obeys a law of power in a scale free graph. Due to this property of scale-free
graph we believe that the thread speculation techniques are not effective in practice.
Once we compute the relevant information (d, σ) we write them back to off-chip mem-
ory using yet another memory task.

The complete parallel percolation program for BFS phase is shown in Figure 2. Once
the programmer defines the coarse-grain parallel tasks the runtime system automatically
divides these tasks into multiple sub-tasks and pipelines them. Obviously, the depen-
dence between the sub-tasks is inherited from that specified in the user program. In
order to achieve the pipeline of computation, inward and outward memory tasks, the
union set UNi is partitioned into multiple sub-blocks. When computation tasks are pro-
cessing the data in block i, inward percolation memory tasks gather the data in block
i + 1 and the outward percolation memory tasks scatter the results that are generated
using the data in block i − 1.

3.2 Percolation Programming for DP

The dynamic programming (DP) algorithm in RNA secondary structure prediction [8]
belongs to a type of non-serial polyadic dynamic programming [7]. We can use a simple
recursive formulation to represent the computation:

m[i, j] =
{

mini≤k<j{m[i, j], m[i, k] + m[k + 1, j]} 0 ≤ i < j < n
a(i) i = j

(1)
The irregular behavior comes from the non-consecutive data dependence and irregular
iteration domain which is a triangular space. Basically, we could use a blocking strategy
to fill the matrix. In [9], the computation of a block is decomposed into combination
of the depended blocks. According to the dependence, the computational sequence of
blocks is from down to up and from left to right in the matrix, and each block depends
on the blocks on both the same row and the same column. When both A(0, 1) and
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1 /∗ t h r e e p i p e l i n e d phase : ( 1 ) o f f −c h i p memory read ;
2 ( 2 ) compuat ion ( a c c e s s i n g on−c h i p memory ) ;
3 ( 3 ) o f f −c h i p memory w r i t e . ∗ /
4 BFS ( i n t v ) {
5 i n t o f f s e t = 0 ;

6 i n t t u r n = 0 ;

7 i n t dv = d [ v ] ;

8 i n t s igmav = sigma [ v ] ;

9 SPAWN TASK{
10 f o r ( i = 0 ; i < b u f f s i z e ; i ++)

11 b u f f [ t u r n ] [ i ] = A d j a c e n t [ i n d e x [ v ]+ o f f s e t + i ] ;

12 o f f s e t += b u f f s i z e ;

13 t u r n ˆ= 1 ; } ;

14 BARRIER WAIT ( ) ;

15 whi le ( o f f s e t < NumEdges [ v ] ) {
16 / / 1 . o f f −c h i p memory read
17 SPAWN TASK{
18 f o r ( i = 0 ; i < b u f f s i z e ; i ++)

19 b u f f [ t u r n ] [ i ] = A d j a c e n t [ i n d e x [ v ]+ o f f s e t + i ] ;

20 o f f s e t += b u f f s i z e ;

21 t u r n ˆ= 1 ; } ;

22 SPAWN TASK{
23 f o r ( i = 0 ; i < b u f f s i z e ; i ++) {
24 w = b u f f 1 [ i ] ;

25 b u f f 2 [ t u r n ] [ i ] = d [w ] ;

26 b u f f 3 [ t u r n ] [ i ] = sigma [w ] ;

27 }
28 t u r n ˆ= 1 ; } ;

29 / / ( 2 ) . compuat ion ( a c c e s s i n g on−c h i p memory ) ;
30 SPAWN TASK{
31 f o r ( i = 0 ; i < b u f f s i z e ; i ++) {
32 i f ( b u f f 2 [ t u r n ] [ i ] < 0) {
33 b u f f 2 [ t u r n ] [ i ] = dv +1;

34 b u f f 3 [ t u r n ] [ i ] += 0 ;

35 }
36 i f ( b u f f 2 [ t u r n ] [ i ] == dv +1)

37 b u f f 3 [ t u r n ] [ i ] += sigmav ;

38 }
39 t u r n ˆ= 1 ; } ;

40 / / ( 3 ) . o f f −c h i p memory w r i t e
41 SPAWN TASK{
42 f o r ( i = 0 ; i < b u f f s i z e ; i ++) {
43 w = b u f f [ t u r n ] [ i ] ;

44 d [w] = b u f f 2 [ i ] ;

45 sigma [w] = b u f f 3 [ i ] ;

46 }
47 t u r n ˆ= 1 ; } ;

48 BARRIER WAIT ( ) ;

49 }
50 }

Fig. 2. BFS codes with percolation on IBM C64



338 G. Tan, V.C. Sreedhar, and G.R. Gao

A(1, 3) are combined to calculate A(0, 3), an ideal memory layout should look like:
A(0, 1) is row-wise and A(1, 3) is column-wise. One strategy of block data layout is
to store each block as both row wise and as column wise array layout. However, this
doubles the memory usage which is not practical. We assume that the matrix is stored
as a row-wise linear array. Thus, the stride of accesses in different row or column within
each block is not constant.

According to the data dependence, the computation of block A(i, j) needs to access
other blocks A(i, i), A(i, i + 1), ..., A(i, j − 1) and A(i + 1, j), A(i + 2, j), ..., A(j, j).
For example the program accesses < A(0, 0), A(0, 3) >, < A(0, 1), A(1, 3 >, <
A(0, 2), A(2, 3) > and < A(0, 3), A(3, 3) > during the calculation of A(0, 3). We
assume that the triangular DP matrix is stored as a linear array in off-chip memory.
The percolation transformation is responsible to transform the non-contiguous access
of a block into a contiguous access in on-chip memory. When a block A(i, j) is com-
puting, the percolation threads gather the non-contiguous elements in off-chip memory
into multiple contiguous space in on-chip memory, then scatter the results to the cor-
responding locations in off-chip memory. The pipeline achieves Just-In-Time Locality,
and the percolated data will be used immediately by the computation task. The un-
used data will never exist in on-chip memory at that time even if the spatial locality
of cache mechanism is satisfied. For the example of computing block A(0, 2), when
the program is percolating block A(1, 2) into on-chip memory, a conventional spatial
locality optimization strategy or speculation may load the elements in block A(1, 3).
Obviously, the current computation does not need A(1, 3) at all. Since C64 provides
user programmable scratchpad, the runtime system ensures that such unnecessary data
is not loaded into the on-chip memory.

4 Evaluation

We have implemented Just-In-Time Locality and percolation for the two programs in
our many-core architecture C64 execution-driven simulation platform. The toolchain
on C64 consists of an optimized GCC compiler, a thread execution runtime systems
TNT [10] (Pthread-like) and a TNT-based OpenMP [11]. In this section we present our
empirical results and compare them with the corresponding OpenMP programs on C64.

4.1 Empirical Results for SSCA2 with Percolation

For SSCA2 we represent the problem size in term of S, where the number of vertices
is 2S. Comparing the result with the OpenMP implementation, we can see that the
percolation process shows a significant performance and scalability improvements (see
Figure 3). Figure 4 illustrates the performance and scalability as we increase the number
of threads for three different scales (i.e., the problem size). Using our approach we
achieve almost linear speedups for all test cases when the number of threads is less than
32. For the test case with a problem size S = 8, the performance stops increasing when
the number of threads reaches 128 because the number of available parallel sub-tasks is
less than the number of hardware thread units. However, we improve the performance
when the problem size is increased, i.e for S = 9 and 10. The degree of a vertex
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determines the amount of parallelism that we can exploit. In percolation programming
we leverage multi-grain parallelism to reduce the number of idle threads. On the other
hand the maximum degree of a vertex is 64 for problem size S = 8. So the available
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parallelism for this small problem size leads to a smaller performance on 128 threads.
For S = 9 and 10, where the maximum vertex degrees are 94 and 348, we further
improve the performance and scalability of the application.

4.2 Empirical Results for DP with Percolation

In order to highlight the advantage of separation of computation from memory oper-
ations, we compared with the performance of a baseline program implemented with
directly blocking algorithm by OpenMP. As shown in Figure 5(a) and 5(b), the re-
constructed program with percolation reduces the execution time for matrix sizes of
2048×2048 and 4096×4096. The effect of percolation for DP is not so significant with
that for SSCA2. Note that in the implementation of DP we use blocking technique to
re-organize the DP matrix so that it shows more inherent locality, which can not be ob-
served in the irregular execution of SSCA2. Further, our percolation program improves
the scalability slightly. Figure 6 reports the absolute speedup achieved by percolation
and OpenMP programs.

5 Related Work

The percolation model has its deep root in the HTMT execution model proposed well
over a decade ago as the basis of the world first (to the best of our knowledge) petaflops
architect project [12]. The concept of percolation was developed early under HTMT
project, and was first exposed in [13, 14]. Unlike the HTMT time, The work reported
here is partly motivated by the challenging technology trend of modern large-scale
many-core chip technology, and driven by the productive software technology avail-
able to us that is not available during HTMT project due to resource limitations.

In our parallel pipelining algorithm we overlap computation task with memory task.
The concept of overlapping computation with I/O, network, and other long latency
operations is an old concept. Prefetching techniques [15, 16, 17] and thread specula-
tion [1, 18, 19] also use such overlapping concept. Most previous work on prefetch-
ing also focused on moving data (mostly contiguous data) from main memory to local
memory (either to register or cache) prior to execution. In the previous prefetching or
speculation, conceptually computation threads ”pull” the data locally using prefetch in-
structions. In our method the local data determines which computation thread is ready
to execute. In other words, data that is local to a core will ”pull” computation thread to
execute on the core. In prefetching there is no control on how much data to prefetch—
prefetching too much or too less data can impact the performance. Besides, previous
works do not discuss the impact of prefetching in the context of massive multithreading
many-core. A variant of thread level speculation uses dependences by monitoring the
reads and writes to memory locations. In producer-cosumer loop iterations, the specu-
lative execution leads to a violation of dependence, then must roll back.

There have been several work on the optimization of irregular programs on parallel
architectures. Recently Erez et.al [20] performed a comprehensive study of 4 irregular
scientific computing applications on a streaming processor. Both their work and ours
share the streaming programming style of gather-compute-scatter. The way to gather
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data ahead makes our approach different from theirs. In [20] the streaming processor
uses a DMA-style transfer, our approach utilizes the ample hardware thread units, where
to hide the overhead of transformation is easier and requires less hardware cost.

6 Conclusion

Both computer architects and system developers is yet to evaluate the new many-core
architectural features and show how such features can be effectively exploited when
executing challenging irregular applications like graph traversal and dynamic program-
ming in practice. This paper introduces Just-In-Time Locality and percolation model for
improving the locality of irregular applications on C64 many-core architecture. How-
ever, our percolation model is not uncontroversial. For example, we did not discuss the
role of ”reusability” of data to be percolated. It is obvious that we should try to give
higher priority to data that can have better reuse. Another is connection to load balanc-
ing: one obviousely need to coordinate the percolation (and Just-In-Time Locality) with
the place where a thread is likely to be scheduled for execution. In an irregular code,
we cannot expect load is evenly distributed among the processing cores - and runtime
coordination of data movement and load balancing should be smooth. We can imagine
cases where not all cores in a 100+ core chip can be kept usually busy all the time - as
our experience has been for C64. In this case, some of the idle cores should be employ-
eed to assist the percolation and coordination - an interesting research topic by its own
right. Finally one fair doubt is the impact on percolation model on programmability - a
question that does not has a short answer and we will have to leave it for future work.
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