
A Parallel Dynamic Programming Algorithm on a
Multi-core Architecture

Guangming Tan†,‡, Ninghui Sun
†Key Lab of Computer System and Architecture,

Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China

‡Graduate School of Chinese Academy of
Sciences, Beijing, China

{tgm, snh}@ncic.ac.cn

Guang R. Gao
Computer Architecture and Parallel Systems Lab
Department of Electrical&Computer Engineering

University of Delaware, Newark, DE, USA
ggao@capsl.udel.edu

ABSTRACT
Dynamic programming is an efficient technique to solve com-
binatorial search and optimization problem. There have
been many parallel dynamic programming algorithms. The
purpose of this paper is to study a family of dynamic pro-
gramming algorithm where data dependence appear between
non-consecutive stages, in other words, the data dependence
is non-uniform. This kind of dynnamic programming is typ-
ically called nonserial polyadic dynamic programming. Ow-
ing to the non-uniform data dependence, it is harder to op-
timize this problem for parallelism and locality on paral-
lel architectures. In this paper, we address the chanllenge
of exploiting fine grain parallelism and locality of nonse-
rial polyadic dynamic programming on a multi-core archi-
tecture. We present a programming and execution model
for multi-core architectures with memory hierarchy. In the
framework of the new model, the parallelism and locality
benifit from a data dependence transformation. We propose
a parallel pipelined algorithm for filling the dynamic pro-
gramming matrix by decomposing the computation opera-
tors. The new parallel algorithm tolerates the memory ac-
cess latency using multi-thread and is easily improved with
tile technique. We formulate and analytically solve the op-
timization problem determing the tile size that minimizes
the total execution time. The experiments on a simula-
tor give a validation of the proposed model and show that
the fine grain parallel algorithm achieves sub-linear speedup
and that a potential high scalability on multi-core arichitec-
ture.

Categories and Subject Descriptors: F.2.3 Theory of
Computation: Analysis of Algorithms and Problem Com-
plexity

General Terms: Algorithm, Performance, Measurement

Keywords: Dynamic Programming, Data Dependence, Multi-
core, Memory Hierarchy, Scalabilitiy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

1. INTRODUCTION
Combinatorial search and optimization is used to look for

a solution to a problem among many potential ones. For
many search and optimization problems, dynamic program-
ming (DP) is a classical, powerful and well-known technique
for solving large kinds of optimization problems. There are
many applications such as scheduling, inventory manage-
ment, automatic control, and VLSI design, etc [17]. More
recently, it has been found useful towards solving many
problems in bioinformatics. For example, the two most im-
portant application is Smith-Waterman algorithm [26] for
matching sequences of amino-acids/necleotides and Zuker’s
algorithm [23] for predicting RNA secondary structures. How-
ever, a combinatorial explosion limits this method’s chance
of being widely used because the CPU time and storage
requirements can be so high. Parallel processing could be
an efficient tool to solve large-scale DP problems. In fact,
parallelization of DP algorithm has been a classical prob-
lem in parallel algorithm research in the last decade. In
order to find efficient parallel algorithms for implementing
DP, Grama, et.al. [17] present a classification of DP for-
mulation: DP can be considered as a multistage problem
composed of many sub-problems. If sub-problems at all lev-
els depend only on the results of the immediately preced-
ing levels, it is called a serial DP formulation; otherwise,
it is called a nonserial DP formulation. Typically, there is
recursive equation called a functional equation, which rep-
resents the solution to optimization problem. If a func-
tional equation contains a single recursive term, the DP
formulation is monadic; otherwise, if it contains multiple
recursive terms, we call is polyadic formulations. Based on
this classification criteria, four classes of DP formulations
can be defined: serial monadic (single source shortest path
problem, 0/1 knapsack problem), serial polyadic (Floyd all
pairs shortest paths algorithm), nonserial monadic (longest
common subsequence problem, Smith-Waterman algorithm)
and nonserial polyadic (optimal matrix parenthesizeation
problem and Zuker algorithm). From the view point of
data dependence [31], serial DP formulation shows a uni-
form dependence because between subproblems is consec-
utive. The data dependence in nonserial DP formulation
appears among non-consecutive levels, meaning that it is
non-uniform. This non-uniform data dependence make the
parallelization harder on current memory hierarchy and net-
work latency computer architecture.

The rest of this paper is organized as follows: Section 2

135

presents a DP problem formulation and the challenges of
parallelization on emerging multi-core architectures. Sec-
tion 3 summarizes previous work on parallelizing the non-
serial DP algorithm. In section 4, for the memory hierar-
chy on multi-core architecture, we construct a preliminary
programming model and execution model. In order to ex-
ploit better parallelism, we perform a transformation of the
data dependence for nonserial DP algorithm. Then based
on the models, we proposed a parallel pipelined algorithm
with load balancing for transformed nonserial polyadic DP.
Furthermore, a tiling technique [21] is used to improve the
performance further. Section 5 develops an analytical model
for the proposed parallel algorithm. Section 6 presents the
experimental results on the C64 simulator-FAST [10], which
is execution driven cycle-by-cycle simulator. We conclude
this paper in Section 7.

2. PROBLEM FORMULATION
A typical example of the nonserial polyadic DP is the base

pair maximization algorithm for predicating RNA secondary
structure. Given an RNA sequence, let S(i, j) denote the
folding of sub-sequence of the RNA strand from index i to
j which results in the highest number of base pairs or min-
imized free energy. The calculation is represented as a DP
formulation:

S(i, j) =

8><
>:

S(i + 1, j − 1) + 1
S(i + 1, j)
S(i, j − 1)
maxi<k<jS(i, k) + S(k + 1, j)

In this formulation, the last equation evaluating maximum
is an nonserial polyadic dynamic programming. The data
dependency and the flow of computation is depicted in Fig-
ure 1.

S(1,4)

S(1,1)

S(2,2)

S(3,3)

S(4,4)

S(1,2)

S(2,3)

S(3,4)

S(1,3)

S(2,4)

Figure 1: The flow of computing the optimal folding of

an RNA sequence s1, ..., s(n), where n = 4

As an abstract representation, the nonserial polyadic DP
formulation is defined by following recurrence:

c(
i
j

) = min
t(i,j)
k=1 {gk(c(

i + a1(i, j)
j − b1(i, j)

), ..., c(
i + aw(i, j)
j − bw(i, j)

))}
This formulation defines a n×n triangular domain with de-

pendence vectors δl(i, j) = (
−al(i, j)
bl(i, j)

). Typically, the value

of t(i, j) is an O(j−i) function which means the computation
of a entry (i, j) in DP domain(matrix) may depend on sev-
eral entries which has been computed. In order to simplify
the presentation of the proposed algorithm, without disturb-
ing the dependence, we instantiate the general formulation
by the DP formulation appearing in RNA secondary struc-
ture prediction. In fact, our research on this instantiation
also applies to the general problem because our proposed al-
gorithm only depends on the data dependence which is not
been changed. The DP matrix can be filled using following
recursive formulation:

m[i, j] =

8><
>:

mini≤k<j{m[i, j], m[i, k] + m[k + 1, j]}
0 ≤ i < j < n

a(i)
i = j

(1)

Larg scale multi-core architectures, which have been main-
stream, have been used to build a petaflops supercomputer.
There are several prototypes or real products of multi-core
chips, such as IBM’s Cell [18]/Cyclops64 [13], Cray’s new

XMT [2] and GRAPE-DR [1]. To some extent, some com-
mon features of these large scale multi-core architectures
are their small on-chip memory (no data cache), explicit
memory hierarchy to programmer and many threads. The
memory access latency can be tolerated by multi-threads.
However, to exploit locality and data reuse in the on-chip
memory while achieving maximum parallelism is a challeng-
ing problem. In this work, we present our parallel algorithm
based on the emerging multi-core architecture.

3. RELATED WORKS
For this family of DP algorithms with non-uninform data

dependence, which obviously make the parallelization harder,
there has been a lot of work on exploiting the parallelism.
Bradford [7] described several algorithms, which solve op-
timal matrix chain multiplication parenthesizations using
the CREW PRAM model. Edmonds et al. [14] and Galil
et al. [16] presented several parallel algorithms on general
shared memory multiprocessor systems. Another impor-
tant research area is in the systolic framework, for example,
Guibas et al. [19, 22] focuses on designing triangular systolic
arrays. These works focus on how to reduce the complexity
of arithmetic cost on different theoretical parallel models.
On distributed memory multi-computer systems, the main
difficulty for obtaining an efficient parallel implementation
is to find a good balance between communication and com-
putation cost. In [8, 15, 25], the authors represented paral-
lel implementations of RNA secondary structure prediction
DP algorithm. The computational load balance is satis-
factory, however, the algorithm do not optimize the com-
munication cost. The authors proved experimentally that
the communication take about 50% of the execution time
for a sequence of length 9212. Although a simple blocking
method was used, they did not take in account the value
of the startup latency, and furthermore, the processors are
assumed to be permanently busy. For current machines it
is an unrealistic approximation. Inspired by the blocking
technique, F. Almeida [4] proposed a parallel implementa-
tion with tiling on a ring of processors. They showed the
usefulness of the tiling technique for this nonuniform depen-
dence DP. However, like the algorithms in [25], this par-
allel tiling algorithm can not achieve computational load
balance. In their performance analytical model, the authors
ignored the fact that the computation of each iteration point
is different. Besides, in order to only achieve communi-
cation between two neighbors tiles, they have to keep the
entire iteration in each processor. G. Tan [27] proposed a
fine-grain parallel algorithm which overlapping computation
with communication on cluster system connected by high
performance network with RDMA mechanism. W. Zhou [33]
presented a parallel out-of-core [29] algorithm for this dy-
namic programming problem under the conventional out-of-
core model. Their research is to find a replacement strat-
egy for in-core buffer. They used a load balance algorithm
which is similar to the method in [28], but this method only
can promise the number of entries on each processor is the
same, the arithmetic cost on each processor is not the same
because of the non-uniform data dependence.

4. THE PROPOSED ALGORITHM
Like memory hierarchy on general computer systems, it

is a great challenge to to exploit parallelism while keeping

136

locality. A general strategy on a cache memory model is
to develop parallel out-of-core algorithm. For example, on
IBM Cyclops64 the latency of access to each memory seg-
ment is different. However, there are many cheap hardware
thread units on this multi-core architecture, which permits
the memory access latency to be tolerated by use of multi-
threading (that is same with other multi-core architecture).
In order to facilitate the study of the methodology for de-
signing algorithms on such a large scale multi-core archi-
tecture, it is necessary to build a programming/execution
model. Because the memory hierarchy plays an important
role in achieving performance, we reconstruct the conven-
tional out-of-core model. The most important feature in
this new model are the helper threads, which are used to
tolerate memory access latency. In our proposed parallel al-
gorithm, there are only two helper threads, one of which is
used to load data from DRAM to SRAM, the other transfers
data from SRAM to DRAM.

compute store

load

load load

load

store

store

store

store

compute

compute

compute

compute

p1

p2

load compute store

load compute store

load compute store

load compute storeload compute storepn

pn−1

...

. . .

. . .

. .

. .
.
.

.

. . .
. . load compute store

. . .

. . .

(a). mode 1

p1

p2
...

. . .

. ..

.

. .

. .
.
.

load

load load load load

compute

compute

compute compute

compute compute

store store

load

store store

compute

compute

compute

compute

store
pn

pn−1

synchronization

time

time
(b). mode 2

.

Figure 2: (a). The execution model of previous out-

of-core model. (b). The execution model of out-of-core

model on multi-core architecture. The number of helper

thread depends on the architecture parameters such as

bandwidth.

4.1 Programming Model
In order to exploit the locality, we refer to out-of-core

programming model which is inspired by data parallel pro-
gramming paradigm [6]. In fact, we can consider the based
multi-core architecture-IBM Cyclops64 as a new data par-
allel architecture. In the out-of-core programming model
mapped on IBM Cyclops64, a large array is declared with
full size stored in DRAM. Consider an array that is too
large to fit in SRAM/SPM on chip, called Out-of-Core Ar-
rays or OCAs. Each time only a small section can fit in
SRAM/SPM. The memory pieces in SRAM/SPM is called
In-Core Arrays or ICAs. In this programming model, the
locality means that operations should access ICAs that are
in SRAM/SPM. Another important indication of this out-
of-core model is that ICAs should be shared so that other
helper threads move the data between ICAs and OCAs. So,
in this model, we can use helper threads to tolerate the
latency of access to OCAs, then release the burden on max-
imize locality.

4.2 Execution Model
In the framework of out-of-core model, each work thread

should follow the sequential steps: load-compute-store. R.
Bordawekar [6] proposed a Local Placement Model in which
a worker can compute the elements in ICAs until it load

the data from OCAs. At the end of each synchronization
step, each thread perform a store to flush ICAs to OCAs.
In their model, all operations are serialized (See Figure 2).
On multi-core architecture, some threads (or idle threads)
can be excluded as helper threads to overlap load/store op-
erations with computation. However in this new execution
model double ICAs should be available. Thus, the compu-
tation of elements in it ICAs and load/store between ICAs
and OCAs are parallelized. The execution is visualized as
Figure 2. In the next sections, we address the challenge
of developing an efficient fine-grained parallel algorithm for
non-serial polyadic dynamic programming on multi-core ar-
chitecture with memory hierarchy.

0 2 31

1

2

3

0

Figure 3: The blocked original DP matrix (size n = 16).

The row and column where red elements locate need

cross block reference.

4.3 Parallel Algorithms on Memory
Hierarchy

Blocking is an efficient technique to exploit locality on
memory hierarchy model. We use blocking strategy to ex-
ploit not only locality, but also fine grain parallelism. How-
ever, the parallelism is not enough if the DP matrix is simply
blocked, because of data dependence. We apply a data de-
pendence transformation to the original problem so that the
data dependence is partially smoothed when the DP matrix
is blocked.

4.3.1 A Transformation of Data Dependence
The purpose of the computation during dynamic program-

ming algorithms is to fill a dynamic programming matrix,
which can be easily implemented as a simple three nested
loops. We consider this as an iteration domain problem,
which can be optimized using blocking/tiling techniques.
Figure 3 gives a original blocked DP matrix. The blocked
matrix B does not change the data dependence. For ex-
ample, B0,3 depends on B0,0,B0,1,B0,2,B3,1,B3,2,B3,3. Ac-
cording to the programming model on memory hierarchy,
only a limited number of sub-blocks are loaded into lower
level memory and computed because of the small size of
memory. Without loss of generality, we assume that we
can load three blocks: the computed block and two other
blocks which it depends on. When B0,3 is being computed
using B0,1, B1,3,only B0,3, B0,1, B1, 3 are loaded. Follow-
ing equation 1, each element pair between B0,1 and B1,3 is
accumulated. However, the corresponding elements on the
right border of B0,1 are in B2,3 and the corresponding ele-
ments on upper border of B1,3 are in B0,0 (See Figure 3),
which are not in lower level memory. We call this case cross
block reference, where the depended elements are reloaded
and the parallelism within blocks decreases. Therefore, in
order to achieve more blocked data reuse and parallelism,
a data dependence transformation is applied to the original

137

DP domain.

30 1 2

0

1

3

2

4

Figure 4: The blocked transformed DP matrix (size

n = 16) where the gray points along the diagonal do not

contribute to computation, the cross block reference is elim-

inated.

Assume (i, j) is the original coordinate in the original do-
main D = {(i, j)|0 ≤ i ≤ j < n}, where n = |D| is the
original problem size, (i′, j′) is the new coordinate in the
transformed domain D′ = {(i′, j′)|0 ≤ i′ ≤ j′ < n′}, where
n′ = n + 1 = |D′| is the new problem size. The iteration
domain transformation is defined as follows:

(i′, j′) = f(i, j) : i′ = i, j′ = j + 1

Thus, in the transformed domain equation 1 is rewritten
as the new equation 2, where a(i) is the known initial value
(the values on the new diagonal also can be any values).

m[i′, j′] =

8><
>:

mini′+1≤k′<j′{m[i′, j′], m[i′, k′] + m[k′, j′]}
0 ≤ i′ < j′ < n′

a(i)
j′ ≤ i′ + 1

(2)

In the new domain, the entries on the new diagonal does
not contribute to the computation. We claim that except
for the unused values on the new diagonal in the new do-
main, the transformed formulation 2 gets the same dynamic
programming matrices with the original formulation 1 in the
original domain. Thus, we have corollary 1.

Corollary 1. ∀(i, j) ∈ D and ∀(i′, j′) = (i, j + 1) ∈ D′,
after formulation 1 and 2 are used in domain D and D′,
respectively, m[i, j] = m′[i′, j′] or m[i, j] = m′[i, j + 1].

Proof: See Appendix 1.
This domain transformation ensures that the new DP for-

mulation 2 gets the correct results. In fact, the original do-
main D is a subset of the transformed domain D′, D ⊂ D′.
It can be viewed as adding a new diagonal to the original DP
matrices (See the gray point along the diagonal in Figure 4.
Thus, the cross block reference is eliminated. Our parallel
algorithm is considered within the transformed domain D′.

4.3.2 Parallel Pipelined Algorithm
Let us assume that we have p + 2 threads, two of which

are helper threads, and the size of transformed domain (DP
matrix) is n. The DP matrix is divided by a block size 2

√
p.

For any block A(i, j) in the blocked transformed domain, it
depends on the blocks on the same row A(i, i...j) and col-
umn A(i...j, j). The blocks along the diagonal are triangles
and they are self-contained, but there exits good parallelism
for computing the triangular blocks in a diagonal-wise way.
Besides, the execution time of the triangles occupies a little
in the total execution time, so we focus on other rectangu-
lar blocks. Because there is data dependence between two
consecutive entries in the same row and column, we can not
get efficient parallelism. However, through decomposing the
computation, we can exploit higher fine grain parallelism.
Based on equation 2, we define two tensor operations ⊗

and ⊕ for the blocked matrices operation. Let matrices
A = (aij)s×s,B = (bij)s×s,C = (cij)s×s.

definition 1. ∀aij ∈ A, bij ∈ B, cij ∈ C, 1 ≤ i, j ≤ s, if
cij = minn

k=1{ci,j , ai,k + bk,j}, then C = A ⊗ B.
definition 2.∀aij ∈ A, bij ∈ B, cij ∈ C, 1 ≤ i, j ≤ s, if

cij = min{ai,j , bi,j}, then C = A ⊕ B.
Thus, we get a formulation to compute any block A(i, j):

A(i, j) = ⊕j
k=i(A(i, k) ⊗ A(k, j))

= (⊕j−1
k=i+1(A(i, k) ⊗ A(k, j)))

⊕(A(i, i) ⊗ A(i, j)) ⊕ (A(i, j) ⊗ A(j, j))

(3)

In equation 3, the computation of a block A(i, j) (i 	= j) is
divided into two parts. The first one depends on rectangular
blocks on the same row/column:

⊕j−1
k=i+1(A(i, k) ⊗ A(k, j))

the second one depends on a triangular block and itself:
(A(i, i) ⊗ A(i, j)) ⊕ (A(i, j) ⊗ A(j, j))

Let us take computation of A(0, 3) for example in Figure 5,
the first part is (A(0, 1) ⊗ A(1, 3)) ⊕ (A(0, 2) ⊗ A(2, 3)), the
second part is (A(0, 0) ⊗ A(0, 3)) ⊕ (A(0, 3) ⊗ A(3, 3)) We
observe that parallelism can be exploited at two levels for
the first part. The first level is O(j−i−1) ⊕ operations;The
second level is each ⊗ operation. The parallelism in the sec-
ond part is low because of the data dependence between two
consecutive entries. However, our decomposition algorithm
leverages the computation in the second part and reduces
the proportion of this part. For computing any block A(i, j),
the number of operators (⊗ and ⊕) is O(j − i − 1) in the
first part, but it is only O(2) in the second part.

p0 p1

p2 p3

p0 p1

p2 p3

p0 p0 p1

p2 p3

p1

p2 p3

thread unit map of a block

rectangular tile

triangular tile

0 1 3

1

2

3

0

2
sqrt(p)

sqrt(p)

Figure 5: Each block size is 4p. The first block in

each row strip is triangular, others are rectangular.

Each block is partitioned into 4 sub-blocks with size of

p =
√

p × √
p when computing a block. The elements are

mapped to threads as a 2-D mesh fashion. The tile along

the diagonal is triangle and others are rectangle whose

width and height are x and y respectively. This figure

illustrates the case p = 4 and the size of tiled space is 16.

During computation of the second part, the sub-matrices
A(i, i) and A(j, j) are triangular. The two operations A(i, i)⊗
A(i, j), A(i, j)⊗A(j, j) depend on the final results of A(i, j),
so A(i, i), A(j, j), A(i, j) are integrated into one sub-matrices,
where the parallelism can be exploited along the diagonal.
Now, we focus on the part of ⊕j−1

k=i+1(A(i, k)⊗A(k, j)). Ob-
viously, each ⊗ for the depended blocks can be executed in
parallel, which is the idea similar to previous coarse grained
parallel algorithm. However, we noted that the memory
access latency is different for each memory segment even
though the memory address is uniformly arranged. So, in
our fine grained parallel algorithm we need to find a strat-
egy to tolerate memory access latency so that the parallel
algorithm can achieve fine scalability.

138

c01

c10 c11

a00 a01

a10 a11

b01

b10 b11

b00

sqrt(p) sqrt(p)

sqrt(p)

sqrt(p)

c00

c00 SRAM BUFFER(ICA)a00 b00 c01 a01 b10

compute load/store

Figure 6: The computation of one block which is divided

into 4 sub-blocks. The sub-blocks from the operand ma-

trices also are divided into 4 sub-blocks. The sub-blocks

are the images in SRAM buffers when computing sub-

block C(0, 0) and loading sub-blocks A(0, 1), B(1, 0) in step

1.

Because the block size is 2
√

p, each block is divided into
4 sub-blocks with size of p =

√
p×√

p (See Figure 6). Each
element in one sub-block is mapped to one thread(See Fig-
ure 5). According to the definition 1, there is no dependence
among all elements in a block for ⊗ operation, so all threads
proceed in parallel. For any i+1 ≤ k ≤ j − 1, we need com-
pute A(i, k)⊗A(k, j). Let C, A and B denote A(i, j), A(i, k)
and A(k, j), respectively. The data dependence shown in
equation 2 indicates that the computation of one sub-block
of C needs the sub-blocks in the same row and column in B
and C, respectively (This is the same with the blocked ma-
trix multiplication). A simple strategy to implement ⊗ can
be derived from matrix multiplication. Typically, it needs
(2
√

p)3 × (3 + 1) = 32p
√

p (3 loads and 1 store), therefore,
there exists data reuse for each sub-block.
Our algorithmic framework is to partition the threads into
computation and helper threads. The helper threads are used
to load/store between on-chip memory and off-chip mem-
ory, while computation threads only access on-chip memory
to perform calculations. In order to reduce the number of
read sub-block from DRAM, we adopt double-buffering ap-
proach allocating three SRAM buffers which contain half of
each sub-block, respectively. There are two helper threads
used to load/store data between DRAM and SRAM. One
half of each of the three buffers is used for computation, the
other half is used to transfer data. The basic idea is that
the helper threads can load/store data that is used to com-
pute the next C sub-block while the computation threads
compute the current C sub-block. The computation of 4
sub-blocks of C can proceed in a pipeline style. The pipeline
algorithm consists of 8 parallel steps which are described in
Figure 7.

ParllelSteps
startup: LOAD C00, A00, B00;
step 1: COMPUTE C00; LOAD A01, B10;
step 2: COMPUTE C00; LOAD C01, B01;
step 3: COMPUTE C01; LOAD B11; STORE C00;
step 4: COMPUTE C01; LOAD C11, A10;
step 5: COMPUTE C11; LOAD A11; STORE C01;
step 6: COMPUTE C11; LOAD C10, B00;
step 7: COMPUTE C10; LOAD B10; STORE C11;
step 8: COMPUTE C10;
end: STORE C10;

Figure 7: The eight pipelined parallel steps for comput-

ing one block. The memory access is overlapped with

computation by multi-thread, that is, the computation

and helper threads proceed in parallel.

The pipeline algorithm ParalelStpes in Figure 7 needs 4
loads/stores from/to C, 4 loads from A, 6 loads from B,
therefore the number of memory access is only 18p. Al-
though the memory access complexity is not optimal, we

have exploited a fine parallel algorithm to overlap data trans-
fer with computation, and thus, the memory access latency
is tolerated.
For each block A(i, j), the number of ⊗ operations required
is O(j − i − 1). In fact, while step 8 is computing C10, one
of the helper threads can load the C00, A00, B00 for the
next ⊗ operation. Thus, the startup step is removed to step
8 so that a pipeline is reformed among the ⊗ operations for
block A(i, j).

4.3.3 Tiling
Tiling iteration domain (loop blocking)[9, 30, 24, 32] is a

well-known technique used by compilers and programmers
to improve data locality and to control parallel granularity
in order to increase the computation to communication ra-
tio. In our parallel algorithm based on the modified out-of-
core programming model, the ”communication” is the data
transfer between DRAM and SRAM/SPM, while the local-
ity in SRAM/SPM also should be accounted. In this case,
tiling is used to minimize the total execution time of parallel
program on out-of-core programming model on multi-core
architecture.
We now apply a tiling approach to this parallel pipelined
algorithm, which fills the transformed domain D′. Each tile
has two parameters x and y, which are called tile height
and width respectively (see Figure 5). In this current work,
we only consider a square tile with x = y (in the rest
of this paper, we only use tile parameters referring to tile
width/height). In the tiled domain, each tile can be con-
sidered as a element in this new domain. In order to keep
the dependence, the tiles along diagonal are triangles, the
other tiles are rectangle, and both tile parameters are x. Be-
cause the data dependence in the tiled domain is the same
as that equation 2, the tiled DP matrix can be filled using
the proposed parallel pipelined algorithm.

5. PERFORMANCE MODELING
The study of performance modeling is confined to paral-

lel algorithm with tiling. The basic operation is blocked ⊗
which contains eight parallel steps. Assume that the size of
the original transformed domain is n, tile parameters is x,
the number of computational threads is p. Then, the size
of the tiled domain is m = n

x
, which is blocked with block

size of 4p = 2
√

p× 2
√

p. According to the proposed parallel
pipelined algorithm, there are m′ = m

2
√

p
row strips. In row

strip i, there are m′ − i blocks to be filled. Because of the
data dependence shown in transformed DP formulation 2,
for any block A(i, j) (i ≤ j < m′ − i) in row strip i, it needs
j−i−1 blocked ⊗ operations. Let I⊗ denotes the number of
blocked ⊗ operations for filling the entire tiled transformed
DP domain.

I⊗ =

m′−2X
i=1

m′−i−1X
j=i+1

j

Because m = n
x
, we get the nubmer of blocked ⊗ operations:

I⊗ =
1

24
[

n3

x3p
3
2

− 6
n2

x2p
+ 8

n

x
√

p
] (4)

5.1 Memory-traffic Complexity
The programming model that is used for designing al-

gorithms that deal with these problems is similar to the
out-of-core model. In the out-of-core model, an important
performance measurement is I/O complexity [3, 20]. On
IBM Cyclops64 multi-core system, there is no data cache,
but the access latency for each memory segment is different,

139

so this memory system can also be consider as a memory
hierarchy. For example, we refer to SPM closest to hard-
ware thread unit as level 1, on-chip SRAM as it level 2 and
off-chip DRAM as level 3. However, SPM is mainly used to
keep the private data for each thread, so we only use SRAM
for In-Core Arrays. In the new out-of-core model, we refer
to memory-traffic complexity. This is defined as the amount
of memory traffic between on-chip SRAM that is smaller
than problem size and off-chip DRAM that is larger than
the problem size.

Lemma 1. For the parallel pipelined algorithm, tiling
with parameter x reduces the memory-traffic complexity by
a factor of x, where x = O(

√
C) and C is the size of on-chip

SRAM.
Proof: For the parallel algorithms without tiling, the

memory-traffic complexity of non-pipelined and pipelined
is: Mnon−pipeline = I⊗ × 32p

√
p = O(n3)

Mpipeline = I⊗ × 18p = O(
n3

√
p
)

For the tiling version, the element of each single ⊗ oper-
ation is tile with parameter x and the volume of a tile is
x2. Then each single ⊗ operation needs x2 memory traffic,
so the amount of memory traffic of the blocked ⊗ operation
is 18px2. Because the number of blocked ⊗ operations is
I⊗, combining equation 4, the memory-traffic complexity is
shown that:

Mtile = I⊗ × 18p

= 1
24

[n3

x3p
3
2

− 6 n2

x2p
+ 8 n

x
√

p
] × 18p

= O(n3

x
√

p
)

Lemma 1 gives the upper bound of memory-traffic com-
plexity. The ⊗ operation is similar to the basic operation in
matrix multiplication, and as a result, we can use the similar
technique [20] to prove the lower bound of memory-traffic

complexity is Ω(n3

x
√

p
), which gives us the following theorem:

Theorem 1. The parallel tiled pipelined algorithm, which
is tiled with parameter x, is asymptotically optimal with re-
spect to memory-traffic complexity.

The term memory-traffic complexity only shows the amount
of memory access similar to the case on general memory hi-
erarchy. However, we noted that there are helper threads to
tolerate memory access latency on multi-core architecture.
That is, besides the memory accesses are overlapped with
computation, they also can be parallelized within memory
bandwidth limitation using helper threads. In this perfor-
mance model, assume that there is no bandwidth limita-
tion and that the memory access for load and store is the
same. We refer to another measure called memory-traffic
efficiency. It is defined as a ratio of the time reduction per-
cent of memory access to the number of helper threads. In
our proposed parallel algorithm, we use two helper threads.
If one helper thread is used for load, the other is used for
store, then the 4 store operations are completely overlapped
and the time reduction percent for a ⊗ operation is 4/18,
therefore, the memory-traffic efficiency is 11% for 2 helper
threads. However, as shown in figure 7, each parallel step
only needs two memory accesses, therefore, we can schedule
one idle load thread to store and the time reduction per-
cent for a ⊗ operation is 8/18 and memory-traffic efficiency
is 22%. If the number helper threads is 3, then in each
parallel step all memory accesses are parallel and the time
reduction percent is 10/18, but memory-traffic efficiency is
19%. In fact, the memory-traffic efficiency is determined
by the parallelism in memory access. In all practical archi-

tectures there exists memory bandwidth limitation, so more
helper threads do not means higher efficiency.

5.2 Execution Time
Under the execute model we now determine a analytic for-

mulation of the execution time of our parallel program. In
this work, we only use square tile. Let us denote the time
to execute a single instance of equation 2 as α and , the la-
tency of one memory access as β. Each step in ParallelSteps
needs

√
p instance of ⊗ operation for each thread. For the

tiled algorithm, since the element of each operation is a tile
with volume x2, the execution time of computation in each
parallel step is: Tcomp = α

√
px3

In each parallel step, there are only two memory accesses
that are parallelized by two helper threads, so the data
transfer time is: Ttran = βpx2

Because the helper and computation threads proceed in
parallel, the time for transferring data and executing ⊗ op-
eration for a tile is overlapped (the execution time should
be determined by the longer one). In the startup and end of
the pipeline, two extra load/store are required. Therefore,
the execution time ParallelSteps is

T⊗ = max{Tcomp, Ttran} = max{α√px3, βpx2} (5)

Combining equation 4 with 5, we get the execution time of
all parallel pipelined steps:

T0(x) = n
2x

√
p
× 2βpx2 + I⊗ × 8 × T⊗

= nβ
√

px + 8 × I⊗ × max{α√px3, βpx2}
=

(
T1(x) = nβ

√
px + 8I⊗ × βpx2 x <

β
√

p

α

T2(x) = nβ
√

px + 8I⊗ × α
√

px3 x ≥ β
√

p

α

(6)

The triangular blocks on the diagonal is self-contained and
their running time is:

T3(x) = (
m′X
i=1

i ×
4
√

pX
j=1

+m′
2
√

pX
j=1

)x3α = nαpx2 +
n2α(4

√
p + 1)

4
x

(7)
So the optimal x is selected to minimize following formula-
tion:

P : Minimize T (x) = T0(x) + T3(x)

s.t.
β
√

p

α
≤ x < min{

q
C

48p
, n
4
√

p
} (8)

Therefore, the objective is to select a optimal tile parameter
x to minimize the function T (x).

Theorem 2. The optimal tile parameter of parallel tiling
pipelined algorithm is selected by the rule:

if 2 < p < α
β
min{

q
C
48

, n
4
}, x∗ =

β
√

p

α
;

otherwise,

x∗ =

8<
:

� n
4
√

p
� − const n ≤

q
C
3

�
q

C
48p

� − const n ≥
q

C
3

Proof: See Appendix 2.

tile size
0 10 20 30 40 50 60 70

tim
e

0

5

10

15

20
T1(x)

T2(x)

T(x)

Figure 8: Finding the global minimum of the tile param-

eter x according to Theorem 2, p = 16, n = 1024, x∗
mid = 12

min{
q

C
48p

, n
4
√

p
} = 64, x∗ = 12

140

We have some observations for solving this non-linear op-
timization problem. According to the solution to T0(x), x
is expected to be larger, however the portion of comput-
ing triangular blocks is more with increase of x–that is, the
portion of parallelism decreased even though the execution
time of parallel pipeline algorithm is reduced. An important
implication from the solving this optimal tiling problem is
the scalability of the parallel algorithm. The whole solution
space is partitioned by x∗

mid. The case that the optimal so-
lution falling into the left of x∗

mid means n
p

< β
α
.That is, the

execution time is determined by the memory data transfer
when the number of thread is larger than some value. Corol-
lary 2 shows that the optimal solution locates the right of
x∗

mid, which means the scalability of our algorithm is de-
termined by the arithmetic operation instead of memory
latency. So our proposed parallel algorithm on multi-core
architecture has fine scalability with large scale processors.
The solution for the global minimum in case of n = 1024
and p = 16 is shown in Figure 8

6. NUMERICAL EXPERIMENTS
IBM Cyclops64 supercomputer is an on-going project and

there is no real machine to date. The simulation tool, named
Functionally Accurate Simulation Toolset (FAST) [10, 12],
is designed for the purpose of architecture design verification
and software development. Based on the FAST simulator, a
thread virtual machine (TNT) [11] is implemented to sup-
port a multi-thread programming environment. The parallel
algorithms are implemented using TNT library on the simu-
lator. Because the DP algorithm only needs to fill an upper
triangular matrix, the data layout is very important towards
improve its locality. However, this topic is beyond the scope
of this paper. We use a linear array to store the triangular
DP matrix with row-wise order. For the ICAs for row and
column data that is depended on by other entities, the data
layouts are row-wise and column-wise respectively.

tile size
0 5 10 15 20 25 30 35

cy
cl

es

0

20

40

60

80

100
threoretical

experimental

Figure 9: The comparison of theoretical and experimen-

tal execution time. p = 16, n = 1024,x∗
mid = 12 x∗ = 12

6.1 Model Validation
We validated the performance model by comparing the

theoretical to experimental execution time, which was mea-
sured on the FAST simulator. Figure 9 plots the trends
of the theoretical and experimental execution time. The
performance model accurately predicts the trend of execu-
tion time and gets the correct the optimal tile parameter
x∗. Because the model does not take the synchronization
into account, the theoretical execution time is less than the
experimental execution time. When the tile size increases,
the number of parallel steps for a given problem size de-
crease, thus the synchronization overhead becomes less be-
cause there is a synchronization at the end of each step. The
plots in figure 9 demonstrates that the difference between
theoretical and experimental execution time is reduced with

Table 1: The execution time of different problem size.

The first row represents the running time of the serial

algorithm which is implemented as three nested loops

iteration. Time: seconds
#threads 256 512 1024 2048 4096
serial 1.40 11.28 90.43 226.54 1738.88
4 0.36 2.46 17.94 42.72 275.82
16 0.16 1.01 6.99 15.75 106.28
64 0.12 0.62 4.57 7.57 44.06

the increasing tile size. Because the synchronization on the
C64 is implemented by hardware efficiently [34], the perfor-
mance model, which does not consider the synchronization
overhead, can simulate the trend of running time and the
optimal tile parameter. However, as shown in the next per-
formance evaluation experiment, it is important to reduce
synchronization overhead in order to achieve better scalabil-
ity.

6.2 Performance
In this test, the execution time is obtained at the optimal

tile parameter for different cases. For emphasizing the im-
portance of locality optimization, we keep the initialized DP
matrix in off-chip DRAM. Table 1 presents the running time
of the original serial and optimized parallel algorithm. This
work attempts to demonstrate some optimization schemes
on multi-core architectures. So the naive serial algorithm is
is implemented as a three nested loops iteration. The pro-
posed parallel algorithm achieves sub-linear speedup. The
locality and scalability of the algorithms are evaluated:

problem size
512 1024 2048

cy
cl

es

0

1e+10

2e+10

3e+10

4e+10

5e+10

6e+10

7e+10
original
optimized

Figure 10: Comparison of the cost of off-chip memory

access for different problem size.

Locality. The computation strategy in ParallelSteps im-
proves data reuse, which reduces the amount of off-chip
memory access, reducing the overhead of memory access.
Figure 10 plots the distribution of computation and off-chip
memory access time for problem size 256, 512 and 1024.
Even though we do not take helper thread into account in
this experiment, the cost of off-chip memory access is re-
duced greatly. The number of computation threads is 4,
so we estimate the number of off-chip memory accesses is
approximate 3 times less than the naive implementation ac-
cording to the algorithmic analysis in section 3.2.3. In our
implementation, tiling is also used to improve the locality, so
the real cost of off-chip memory access is reduced by more
than 3 times. In other words, the pipeline algorithm ac-
tually reduced the DRAM bandwidth through the on-chip
data reuse. When the algorithm is implemented in IBM
Cyclops64-like multi-core architecture, an more aggressive
optimization trick is to use LDM/STM composed of four

141

LDD/STD(load/store double word) instructions to aggre-
gate multiple memory access. Hence, DRAM requests are
reduced by 1

4
times so that the utilization of DRAM band-

width is improved.

problem size
4 14 24 34 44 54 64

sp
ee

du
p

1

11

21

31

41

51

61 n=256

n=512

n=1024

n=2048

Figure 11: The speedup of our proposed parallel

pipelined algorithm on different number of threads

#threads
0 10 20 30 40 50 60 70

tim
e(

s)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3
n=256

n=512

(a)

#threads
0 10 20 30 40 50 60 70

tim
e(

s)

0

10

20

30

40

50
n=1024

n=2048

(b)
Figure 12: The total execution time for problem size

256, 512, 1024 and 2048

Scalability. First, we have measured the scalability of the
proposed parallel pipelined algorithm in weak scaling exper-
iments. In a weak scaling study, we increase the problem size
as the number of compute threads increases. The speedup
is defined as the ratio of the execution time of parallel pro-
gram to the execution time of the original serial program.
Figure 11 clearly demonstrates the scalability of our paral-
lel DP scheme. For all problem sizes, the parallel algorithm
achieves sub-linear speedups because of the greatly improve-
ment of locality and the pipeline scheduling scheme which
hide the off-chip memory access latency. This is most evi-
dent in the case where the number of threads is less than 16,
and the parallel algorithm get linear speedups. The plots
show that the algorithm has a fine scalability that means
higher speedup for a larger scale problem size on a larger
scale processor size.
Second, we have conducted strong scaling experiments. In
contrast to weak scaling, we fixed the size of the problem size
while increasing the number of processors in the strong scal-
ing experiments. Figure 12 presents the strong scaling ex-
periments results. As shown in this experiment, for a given
problem size, as the number of threads increase, the reduc-
tion in execution time becomes less significant. Although
there is an efficient hardware synchronization on C64, the
overhead becomes significant when the cost of arithmetic
and memory latency is greatly reduced for a given problem

size on large scale threads. Figure 13 and 14 plot the syn-
chronization overhead trends. For the small problem sizes
such as 256 and 512, the percentage of synchronization over-
head determines the the total execution time.
A barrier synchronization is inserted at the end of each
step ParallelSteps to implement the above pipelined scheme.
This guarantees that computation happens after loading all
the required data, and that storing follows the corrrespond-
ing computation stage. Although a barrier can be finished
in as little as dozens of cycles, since the pipeline algorithm
hides the memory access latency and the time of arithmetic
operations is reduced greatly by parallel thread units, the
overhead of barrier synchronization become significant (see
Figure 13). Because of the limitation of the simulator, we
can not test larger problem sizes in time, but the experi-
ments give some reasonable implications. It is certain that
the cost of one synchronization operation increases with the
larger scale of threads, but the percentage of the overhead of
synchronization decreases with increasing of problem size in
Figure 13. This implicates that the algorithm has a fine scal-
ability with problem size. An interesting case in Figure 14 is
that the total synchronization time decreases with the larger
scale of threads. This performance benefits from the optimal
tiling parallel technique. On one hand, while a larger scale of
threads results in more synchronization time, it reduces the
number of synchronization operations. On the other hand,
the volume of a tile determines the number of ParallelSteps
to fill the DP matrix. However, although most of the bar-
rier synchronizations occur in ParallelSteps, a proper tile
parameters can reduce the synchronization overhead. This
causes the parallel algorithm to have reasonable scalability
with the number of threads.

#threads
4 14 24 34 44 54 64

pe
rc

en
t

0

0.2

0.4

0.6

0.8

1
n=256

n=512

n=1024

n=2048

Figure 13: The synchronization overhead percentage in

total execution time

#threads
4 14 24 34 44 54 64

tim
e

0

2

4

6

8

10

12

14 n=256

n=512

n=1024

n=2048

Figure 14: The synchronization overhead time

7. CONCLUSION AND FUTURE WORK
We have demonstrated an efficient scheme to exploit fine

grain parallelism and locality of a dynamic programming al-
gorithm with non-uniform data dependence on a multi-core
architecture. In order to generalize program optimization
technique, we have presented a programming and execu-
tion model for C64-like multi-core architectures. Moreover,
this model is an extension conventional out-of-core model,
therefore our proposed algorithm can be adapted to achieve
high performance on conventional out-of-core model. Be-

142

cause experiments have shown that our proposed perfor-
mance model is reasonable, we can apply a similar technique
to optimize other algorithm on multi-core architecture. In
fact, our solution of the optimal parameter can be incorpo-
rated into the development of automatic optimization tools
or runtime functions in compilers. Besides, if we ignore the
helper threads, the decomposition and pipeline technique in
the parallel algorithm can be efficiently Obviously, In or-
der to achieve high scalability with parallel algorithms on
large scale threads, it is necessary to optimize synchroniza-
tion overhead further. Another challenge is to develop a
method to analytically determine the optimal number of
helper threads which is used to tolerate memory access on
multi-core architecture. This topic is very important to port
more applications to the emerging multi-core architectures.
In our on-going work, we are optimizing a graph theory algo-
rithms benchmark SSCA#2 [5] on C64 platform. Under the
framework of our proposed execution/programming model
on multi-core architecture, the preliminary results show that
the optimized algorithms achieve 2−6 speedups for the orig-
inal benchmark. Since SSCA#2 benchmark is memory in-
tensive and its memory access is irregular, the determination
of the optimal helper threads plays a very important role in
achieving better performance.

8. ACKNOWLEDGMENTS
This work is partially supported through the support from

NSFC (60633040), IBM, ET International, the Department
of Defense, the Department of Energy (DE-FC02-01ER25503),
the National Science Foundation (CNS-0509332), and other
government sponsors. We would like to thank many CAPSL
member Weirong Zhu, Andrew Russo, Ziang Hu for helpful
discussions.

9. REFERENCES
[1] http://grape-dr.adm.s.u-tokyo.ac.jp/system-en.html.

[2] http://www.cray.com/products/xmt/.

[3] A. Aggarwal and J. S. Vitter. The input/output complexity of
sorting and related problems. Communications of the ACM,
31(9):1116–1127, 1998.

[4] F. Almeida, R. Andonov, and D. Gonzalez. Optimal tiling for
rna base pairing problem. acm symposium on parallel
architecture and algorithm. In ACM Symposium on Parallel
Architecture and Algorithm, pages 173–182, 2002.

[5] D. Bader and K. Madduri. Design and implementation of the
hpcs graph analysis benchmark on symmetric multiprocessors.
In The 12th International Conference on High Performance
Computing (HiPC 2005), pages 465–476, 2005.

[6] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and
M. Paleczny. A model and compilation strategy for out-of-core
data parallel programs. In Proceedings of the fifth ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pages 1–10, 1995.

[7] P. G. Bradford. Efficient parallel dynamic programming. in
30th annual allerton confer-ence on communication. In Control
and Computing, pages 185–194, 1992.

[8] J. H. Chen, S. Y. Le, B. A. Shapiro, and J. V. Maizel.
Optimization of an rna folding algorithm for parallel
architectures. Parallel Computing, 24(1617-1634), 1998.

[9] S. Coleman and K. S. McKinley. Tile size selection using cache
organization and data layout. In proceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementation, 1995.

[10] J. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. Fast: A
functionally accurate simulation toolset for the cyclops-64
cellular architecture. In Workshop on Modeling,
Benchmarking and Simulation (MoBS), held in conjunction
with the 32nd Annual International Symposium on
Computer Architecture (ISCA’05), 2005.

[11] J. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. Tiny threads: a
thread virtual machine for the cyclops-64 cellular architecture.
In Fifth Workshop on Massively Parallel Processing
(WMPP), held in conjunction with the 19th International
Parallel and Distributed Processing System, 2005.

[12] J. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. Towards a software
infrastructure for the cyclops-64 cellular architecture. In The
20th International Symposium on High Performance
Computing Systems and Applications (HPCS’06), 2006.

[13] M. Denneau and H. S. Warren. 64-bit cyclops priciples of
operation. Technical report, IBM Watson Research Center,
2005.

[14] P. Edmonds, E. Chu, and A. George. Dynamic programming
on a shared memory multiproc-essor. Parallel Computing,
19(1):9–22, 1993.

[15] I. H. M. Fekete and P. Stadler. Prediction of rna base pairing
posibilities for rna secondary structure. Biopolymers,
9:1105–1119, 1990.

[16] Z. Galil and K. Park. Parallel algorithm for dynamic
programming recurrences with more than o(1) dependency.
Journal of Parallel and Distributed Computing, 21:213–222,
1994.

[17] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction
to Parallel Computing. Addison Wesley, 2003.

[18] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic processing in cell’s
multicore architecture. IEEE Micro, pages 10–24, March 2006.

[19] L. Guibas, H. Kung, and C. Thomson. Direct vlsi
implementation of combinatorial algorithms. In Caltech
Conference on VLSI, pages 509–525, 1979.

[20] J. Hong and H. Kong. I/o complexity: The red blue pebble
game. In Proceedings of ACM Symposium on Theory of
Computing, 1981.

[21] F. Irigoin and R. Triolet. Supernode partitioning. In
proceedings of the 15th ACM Symposium on Principles of
Programming Languages, pages 319–329, 1988.

[22] B. Louka and M. Tchuente. Dynamic program-ming on
two-dimensional systolic arrays. Information Processing
Letters, 29:97–104, 1988.

[23] R. B. Lyngso and M. Zuker. Fast evaluation of internal loops
in rna secondary structure prediction. Bioinformatics, 15(6),
440-445 1999.

[24] J. Ramanujam and P. Sadayappan. Tiling multidimensional
iteration spaces for non share memory machines. In
Supercomputing, pages 111–120, 1991.

[25] B. A. Shapiro, J. C. Wu, D. Bengali, and M. J. Potts. The
massively parallel genetic algorithm for rna folding: Mimd
implementation and population variation. Bioinformatics,
17(2):137–148, 2001.

[26] T. Smith and M. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology,
147(1):195–197, 1981.

[27] G. Tan, S. Feng, and N. Sun. Locality and parallelism
optimization for dynamic programming algorithm in
bioinformatics. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing.

[28] G. Tan, S. Feng, and N. Sun. Load balancing algorithm in
cluster-based rna secondary structure prediction. In
proceedings of the 4th International Symposium on Parallel
and Distributed Computing, pages 91–96. IEEE Computer
Society, 2005.

[29] J. S. Vitter. External memory algorithms and data structures:
Dealing with massive data. ACM Computing Surveys,
33(2):209–271, 2001.

[30] M. Wolfe. Iteration space tiling for memory hierarchies.
Parallel Processing for Scientific Computing, pages 357–361,
1987.

[31] M. Wolfe. Data dependence and program restructuring. The
Journal of Supercomputing, 4:321–344, 1990.

[32] J. Xue and C. Huang. Reuse driven tiling for improving data
locality. In International Journal of Parallel Programming,
volume 26, pages 671–696, 1998.

[33] W. Zhou and D. K. Lowenthal. A parallel, out-of-core
algorithm for rna secondary structure prediction. In
Proceedings of the 2006 International Conference on Parallel
Processing, pages 74–81, 2006.

[34] W. Zhu and V. C. Sreedhar and Z. Hu and G. R. Gao.
Synchronization State Buffer: Supporting Efficient Fine-Grain
Synchronization on Many-Core Architectures. The 34th
International Symposium on Computer Architecture. 2007.

143

APPENDIX

A. PROOF OF COROLLARY 1
Proof: Diagonal traverse, horizontal traverse and verti-

cal traverse can be used to fill the DP matrices, for simplic-
ity, we only give the proof with diagonal traverse. Because
the diagonal in the transformed domain D′ is unused, it is
ignored.
Base case: When diagonal d = j − i = 0, m[i, j] = a(i) is
the initial value and m′[i′, j′] = m′[i, j +1] = a(i) also is the
initial value, so m[i, j] = m′[i′, j′] or m[i, j] = m′[i, j + 1],
where (i′, j′) = (i, j + 1)
Induction step: Assume d = j − i < p, m[i, j] = m′[i′, j′]
where (i′, j′) = (i, j + 1), it has to be proven true for d =
j − i = p. For (i′, j′) = (i, j + 1) and d > 0, we have

m′[i′, j′] = mini′+1≤k′<j′{m′[i′, j′], m′[i′, k′] + m′[k′, j′]}
= mini+1≤k′<j′{m′[i, j′], m′[i, k′] + m′[k′, j′]}
= mini+1≤k′<j+1{m′[i, j + 1], m′[i, k′] + m′[k′, j + 1]}

and

m[i, j] = mini≤k<j{m[i, j], m[i, k] + m[k + 1, j]}
According to the definition of domain transformation func-
tion, the initial value of m′[i, j + 1] equals to that of m[i, j].
So we only have to proof that m′[i, k′] + m′[k′, j + 1] =
m[i, k] + m[k + 1, j] for i + 1 ≤ k′ < j + 1 and i ≤ k < j.
In the process of calculating DP formulation, k and k′ is
increased by 1 from i + 1 and i, respectively, that is to say,
k′ = k + 1, so we have

m′[i, k′] + m′[k′, j + 1] = m′[i, k + 1] + m′[k + 1, j + 1]

Since k < j ⇒ k − i < j − i < p and i ≤ k ⇒ j − k − 1 <
j − i < p, according to the induction hypothesis, we have

m[i, k] = m′[i, k + 1]
m[k + 1, j] = m′[k + 1, j]

Thus, for i + 1 ≤ k′ < j + 1 and i ≤ k < j, m′[i, k′] +
m′[k′, j + 1] = m[i, k] + m[k + 1, j]. Furthermore:

mini≤k<j{m[i, j], m[i, k] + m[k + 1, j]}
= mini+1≤k′<j+1{m′[i, j + 1], m′[i, k′] + m′[k′, j + 1]}

That is, when d = j − i = p, m[i, j] = m′[i′, j′] or m[i, j] =
m′[i, j + 1], where (i′, j′) = (i, j + 1).
This finishes the proof for Corollary 1.

B. PROOF OF THEOREM 2
Before we give a proof of theorem 2, we prove the following

corollary 2 and 3. Note that the following properties hold:

T1(x) ≥ T2(x) x ≤ β
√

p

α

T1(x) = T2(x) x =
β
√

p

α

T1(x) ≤ T2(x) x ≥ β
√

p

α

Therefore we need to solve the following optimization prob-
lem:

P′ : Minimize T0(x) = 8 × min{max{T1(x), T2(x)}}
s.t. x = O(

√
C)

(9)
In our parallel algorithm, there are at least six SRAM

buffers with sizes of p tiles, whose data type is double, and
therefore, we get the first constraint condition:

x <

s
C

48p
(10)

Next, noting that I⊗ > 0, we get the second constraint
condition:

x <
n

4
√

p
(11)

Therefore, by combining equations 4, 9, 10, 11 an instance
of the optimization problem is produced as follows:

P ′ : Minimize T0(x)

= 1
24

8<
:

T1(x) = n3β√
px

+ 9nβ
√

px − 6n2β x ≤ β
√

p

α

T2(x) = 8nαx2 + (nβ
√

p − 6n2α√
p

)x + n3α
p

x ≥ β
√

p

α

s.t. x <
q

C
48p

x < n
4
√

p

(12)

By denoting x∗ as the solution of problem P ′, we have
following corollary:

Corollary 2. Given the problem size n and SRAM size
C, the optimal tile parameter x∗ for problem P ′ is:

x∗ =

8<
:

� n
4
√

p
� − const n ≤

q
C
3

�
q

C
48p

� − const n ≥
q

C
3

where const is positive integer which satisfies x∗ > 0
Proof:If we denote by x∗

1 and x∗
2 as the solutions of T1(x)

and T2(x) respectively, we get:

x∗
1 =

n

3
√

p
x∗
2 =

6nα − pβ

16α
√

p

If we denote x∗
mid =

β
√

p

α
, it partitions the solution space

into the two intervals: (0, x∗
mid] and [x∗

mid, min{
q

C
48p

, n
4
√

p
}).

However, it is obviously that x∗
1 > n

4
√

p
and x∗

2 > n
4
√

p
, that

is, x∗
1 and x∗

2 are out of the valid solution space. In the so-
lution space to the left of x∗

1 and x∗
2, T1(x) and T2(x) are de-

scending and they reach a minimum point at min{
q

C
48p

, n
4
√

p
}−

const.
Corollary 3. Given the problem size n and 2 < p <

α
β
min{

q
C
48

, n
4
}, the optimal solution to problem P is x∗ =

β
√

p

α

Proof:Let a = (8nα+nαp), b = (nβ
√

p− 6n2α√
p

+
n2α(4

√
p+1)

4
),

the global minimum of T (x) is obtained at x∗ = −b
2a

. How-

ever, the solution space is confined within the interval [
β
√

p

α
,

min{
q

C
48p

, n
4
√

p
}). Assume that x∗ >

β
√

p

α
. we have

n <
4βp(2p + 17)

24α − α
√

p(4
√

p + 1)
(13)

According to equation 13, n > 0 if and only if p ≤ 2.

That is, when p > 2, x∗ <
β
√

p

α
. The property of quadratic

function shows that T (x) is increasing for x > x∗. So the

solution to problem P is
β
√

p

α
.

Combining Corollary 2 and 3, we can determine the opti-
mal tile parameter x∗ using following theorem:
Theorem 2. The optimal tile parameter of parallel tiling
pipelined algorithm is selected by the rule:

if 2 < p < α
β
min{

q
C
48

, n
4
}, x∗ =

β
√

p

α
;

otherwise,

x∗ =

8<
:

� n
4
√

p
� − const n ≤

q
C
3

�
q

C
48p

� − const n ≥
q

C
3

144

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

