
MegTaiChi: Dynamic Tensor-based Memory Management
Optimization for DNN Training

Zhongzhe Hu
Institute of Computing Technology,

Chinese Academy of Sciences
huzhongzhe@ncic.ac.cn

Junmin Xiao∗
Institute of Computing Technology,

Chinese Academy of Sciences
xiaojunmin@ict.ac.cn

Zheye Deng
Megvii Technology Co.,Ltd.
dengzheye@megvii.com

Mingyi Li
Institute of Computing Technology,

Chinese Academy of Sciences
limingyi@ncic.ac.cn

Kewei Zhang
Institute of Computing Technology,

Chinese Academy of Sciences
zhangkewei@ncic.ac.cn

Xiaoyang Zhang
Institute of Computing Technology,

Chinese Academy of Sciences
zhangxiaoyang@ncic.ac.cn

Ke Meng
Alibaba Group

septic.mk@gmail.com

Ninghui Sun
Institute of Computing Technology,

Chinese Academy of Sciences
snh@ict.ac.cn

Guangming Tan
Institute of Computing Technology,

Chinese Academy of Sciences
tgm@ict.ac.cn

ABSTRACT
In real applications, it is common to train deep neural networks
(DNNs) on modest clusters. With the continuous increase of model
size and batch size, the training of DNNs becomes challenging
under restricted memory budget. The tensor partition and tensor
rematerialization are twomajor memory optimization techniques to
enable larger model size and batch size within the limited-memory
constrain. However, the related algorithms failed to fully extract the
memory reduction opportunity, because they ignored the invariable
characteristics of dynamic computational graphs and the variation
among the same size tensors at different memory locations. In this
work, we propose MegTaiChi, a dynamic tensor-based memory
management optimization module for the DNN training, which
first achieves an efficient coordination of tensor partition and ten-
sor rematerialization. The key feature of MegTaiChi is that it makes
memory management decisions based on dynamic tensor access
pattern tracked at runtime. This design is motivated by the obser-
vation that the access pattern to tensors is regular during training
iterations. Based on the identified patterns, MegTaiChi exploits
the total memory optimization space and achieves the heuristic,
adaptive and fine-grained memory management. The experimental
results show, MegTaiChi can reduce the memory footprint by up
to 11% for ResNet-50 and 10.5% for GL-base compared with DTR.
For the training of 6 representative DNNs, MegTaiChi outperforms
MegEngine and Sublinear by 5× and 2.4× of the maximum batch
sizes. Compared with FlexFlow, Gshard and ZeRo-3, MegTaiChi
achieves 1.2×, 1.8× and 1.5× performance speedups respectively
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on average. For the million-scale face recognition application, Meg-
TaiChi achieves 1.8× speedup compared with the optimal empirical
parallelism strategy on 256 GPUs.
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1 INTRODUCTION
The current popular deep learning frameworks support both declar-
ative and imperative style programming, which are based on the
static and dynamic computational graph(SCG and DCG) respec-
tively. With the development of various models, the programming
mode based on DCG is more convenient to deploy and debug a new
model compared to SCG, which is flexible for the exploration of
deep neural network (DNN) architectures.

As state-of-the-art deep learningmodels continue to grow,model-
training within the constraints of on-device memory becomes in-
creasingly challenging. Besides, the scarce on-device memory re-
source also limits the training with large batch sizes. Related works
show that, the major memory consumption in the DNN training
comes from storing model parameters and intermediate layer out-
puts which are generated during forward propagation and used
again in the backward propagation. In current deep learning frame-
works, intermediate outputs are usually maintained in on-device
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memory until they are no longer needed, resulting in high memory
consumption that prevents model size and batch sizes.

To tackle the challenges above, two major techniques are de-
veloped: tensor partition and tensor rematerialization. The tensor
partition is to split model parameters of different layers into par-
titions and place each partition on a separate machine where the
training for the partition takes place [8, 9, 17, 25, 27, 32]. The ten-
sor rematerialization focused on reducing the on-device memory
footprint on a single machine. This technique is based on the de-
sign principle of releasing the memory for intermediate tensors in
the forward propagation and regenerating the released tensors in
backward propagation if necessary[6]. In general, the techniques
both reduce the entry barrier of processing large models and en-
able large batch sizes without model accuracy loss. Additionally,
there are alternative ways to reduce memory consumption, such as
using lower-precision computations [16] and compressing model
parameters via quantization and sparsification [4, 26]. However,
these approaches affect model accuracy and require heavy hyper-
parameter tuning, which are not considered in our work.

In real applications, it is common to train DNNs with large model
size or batch sizes on clusters of modest size, such as training BERT
model in a private cloud platform with few GPUs [23]. In this sce-
nario, our work combines the tensor partition and rematerialization
together for memory management on DCG. Although these two
optimization techniques can both reduce memory footprint, they
were developed separately [28, 29] based on different application
requirements. In fact, the tensor partition was designed for training
a large model on multiple machines, which aimed to achieve load
balance to maximize parallelism and locality to minimize network
communication. However, the tensor rematerialization was pro-
posed to enable the training with on-device memory constraints
on a single machine, which aimed to save the on-device memory
space by relying on secondary storage or external computation.
It seems natural to combine them to improve the performance of
model-training on modest clusters. However, three complications
make the combination non-trivial. (1) Since recent tensor partition
plans[15, 19, 23, 28, 29, 33] are usually defined before the execution
and fixed during the training, these plans don’t take into account
the runtime information which essentially determines the tensor
rematerialization. Hence, the first issue is how to achieve dynamic
adjustment of tensor partition during the runtime. (2) The sec-
ond issue is how to determine which history tensors should be
evicted and later regenerated after the current tensor partition plan
is generated. [6, 13, 14, 18, 22]. (3) As both the tensor partition and
rematerialization plans control the life span of tensors in on-device
memory, it is necessary to consider the optimization of memory
space assignment. The third issue is how to assign the memory
space for each tensor to improve the memory usage.

Our work is based on two observations. (1) Similar to reuse and
locality analysis of memory accesses for traditional programs, ten-
sor accesses in deep learning training also exhibit data reuse and
fixed patterns. (2) There are some invariable characteristics in DCGs
which are built dynamically across millions of iterative steps. These
two observations give the opportunity to combine tensor partition
and rematerialization. Firstly, abstracting and concluding efficient
tensor partition patterns could achieve the immediate generation
of tensor partition plans during the runtime. Secondly, tracking the

runtime information about tensor accesses could guide releasing
and regenerating tensors. Thirdly, exploiting the invariable char-
acteristics of DCGs could make it possible to arrange the spatial
position of tensors in memory for global planning memory usage.

In this work, we propose a dynamic computational graph based
memorymanagementmodule calledMegTaiChi, which successfully
combines the tensor partition and rematerialization techniques to-
gether, and enables dynamic memory management at operator and
tensor granularity. MegTaiChi is heuristic, adaptive and fine-grained.
(1) Heuristic: the tensor partition is generated dynamically based on
pattern-driven models. (2) Adaptive: the tensor rematerialization
is adjusted automatically according to the current memory usage.
(3) Fine-grained: the memory allocation is precise based on the
memory rearrangement of tensor positions.

We summarize our contributions as follows.
• Propose a dynamic tensor-based memory management opti-
mization module MegTaiChi for DNNs training, which first
achieves an efficient coordination of tensor partition and
tensor rematerialization techniques.

• Develop a dynamic tensor partition strategy which achieves
dynamic adjustment during the model training process.

• Design a dynamic tensor management strategy which trade-
offs swapping and recomputing mechanisms on memory
management.

• Propose an optimal memory allocation scheme to further
alleviate the memory fragmentation problem by exploiting
the invariable characteristics of DCGs.

• Evaluate and analyze the performance of the proposed opti-
mizations, which proves thatMegTaiChi supports large-scale
DNN training well.

2 BACKGROUND
2.1 Computational Graph
In major deep learning frameworks, computational graphs are ap-
plied to express the training process, where operators or functions
are abstracted as computational nodes, and data dependency is
represented by edges. A computational graph is usually classified
into two distinct types: dynamic and static, which respectively
correspond to imperative and declarative programming style.

Imperative style framework such as PyTorch[21] defines and
performs DCG during execution, which is termed as define-by-
run [3, 18]. When a tensor is defined in a DCG, its value has been
determined. This programming mode is convenient for deploying
and debugging models, and flexible for representing the training
process of various DNNs. Hence, DCG is particularly popular in
academic community.

Declarative style framework such as Lazy-TensorFlow[2] defines
SCG before performing it, which is termed as define-and-run. When
SCG is constructed, actual computations do not take place. All
operations can be scheduled before execution. Hence, the training
on SCG is easy to achieve higher performance and lower memory
usage compared with DCG.
2.2 Tensor Partition
For training a large model on multiple machines, tensor partition
is to split model parameters of intermediate layers into multiple
smaller tensors, and distribute them to different machines [8, 9, 17,
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25, 27, 32], which can lower the per-machine memory footprint.
When the tensor partition is across 𝑘 machines, each machine
roughly consumes 1/𝑘 of the total memory required to run the
computation on one machine. Besides, partitioning also has the
important benefit of performance speedup via parallel execution.
Our goal is to automatically partition the tensors and parallelize
the operators on DCG to enable the training with large batch sizes
or models.
2.3 Tensor Rematerialization
Tensor rematerialization is a technique to enable the training with
large models or batch sizes that exceeds limited memory on a single
machine without modifying models, which usually involves two
general methods: swapping and recomputing [6, 13, 14, 18, 22]. Both
methods are based on the design principle of releasing some parts
of intermediate tensors in the forward propagation and regener-
ating them in backward propagation. They differ in how regener-
ation is performed. Specifically, The swapping method leverages
the host memory as an external memory and copies the interme-
diate data back and forth between host and on-device memory
asynchronously, while the recomputing method releases some inter-
mediate tensors directly from on-device memory and regenerates
them again by replaying the forward computation if necessary. In
general, both techniques above do not affect training accuracy. In
this paper, we only consider DCG. Figure 1(a) shows an example of
rematerialization on DCG. When OP4 needs to calculate a tensor
𝑓 , the input tensor 𝑒 is not in memory (it has been evicted). OP3
needs to be executed to regenerate tensor 𝑒 firstly. But, OOM is
triggered at this time. Evicting tensors from the historical tensor
set is necessary. Swapping tensor 𝑎 and 𝑏 to host confirms OP3 to
generate tensor 𝑒 . For executing OP4, OOM occurs again. Hence, it
is necessary to evict tensor 𝑐 from the tensors remaining in memory
for successfully generating tensor 𝑓 .
2.4 Fragmentation and Defragmentation
From Figure 1(a), it is clear that the tensor rematerialization needs
to dynamically free and allocate memory frequently during this
process, whichwill lead to seriousmemory fragmentation. As shown
in Figure 1(b), when the small memory chunk for the tensor 𝑏 is
released in time 𝑇5, the large memory request for 𝑒 cannot reuse
the memory chunk for 𝑏. At this time, it is necessary to defragment
the memory, but the defragmentation operation requires the help
of the host memory, which will seriously affect performance.
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Figure 1: (a) DTE applys on an instance. (b) DTE bringsmem-
ory fragmentation problem.

3 APPROACH AND CHALLENGES
3.1 Opportunity
The design of MegTaiChi is based on two key observations. First,
the memory management on DCG seems difficult to be optimized
since the computational graph is unknown before the execution, but

the processing procedures are based on tensor operations. Similar
to reuse and locality analysis of memory accesses for traditional
programs, tensor accesses in deep learning training also exhibit data
reuse and certain access patterns. Thus, we believe that dynamically
tracking fine-grained tensor accesses provides the foundation for
effective memory management optimizations on DCG.

Second, the properties of DNN structure ensure the effective-
ness of our approach. The training process consists of millions of
iterative steps. Across iterations, the tensor accesses have some
repeated and fixed access patterns, and DCGs have some invari-
able characteristics even though they are built dynamically. This
means that analyzing the tensor access patterns and the invariable
characteristics of DCG can easily reveal the memory optimization
opportunities with concrete guidance, e.g., how to partition tensors.

3.2 Our Approach
As Figure 2 shown, MegTaiChi is a virtual machine (VM) module for
memory manage optimization on DCG by controlling tensor access
behaviors with basic primitive operations, e.g., GetValue, DeLete,
SwapIn, SwapOut, Drop, etc. MegTaiChi can manage the dynamic
memory access at the tensor granularity from both the spatial and
temporal localities. First, for the spatial locality, the dynamic tensor
partition is proposed to determine whether or how to partition each
tenor, by balancing the execution cost and memory cost. Second,
for the temporal locality, the dynamic tensor evicting is designed to
determine whether or when to intercept tensor allocations, accesses,
and deallocations by avoiding the release of high frequency used
data and balancing the tensor rematerialization time and memory
footprint. Third, together the spatial locality with temporal locality,
the near-optimal memory allocation is developed to determine the
exact memory address for each tensor to make full use of all the
device memory of whole system by capturing and using the impor-
tant invariable characteristics of DCG and avoiding the generation
of memory fragments.

Dynamic Tensor Partition (DTP) is a heuristic design for par-
titioning tensors. When VM instructions are generated for an op-
erator OP to be performed, MegTaiChi needs to determine how to
execute the OP. According to the meta information of the inputs
and outputs, e.g., the shape of input tensors, DTP would generate
a partition schedule for all the tensors which take part in the OP,
which leads to an execution plan for the OP. As shown in Panel ❶

of Figure 2, during the instruction generation for executing OP𝑖+1,
MegTaiChi applies DTP to infer the tensor partition plan of OP𝑖+1
heuristically, which may need to change the partition dimension of
outputs ofOP𝑖 and the partition dimension of weights before execut-
ing OP𝑖+1. Consequently, the relevant communication instruction
will be generated and inserted in front of the computation instruc-
tion of OP𝑖+1. It is worth mentioning that DTP successfully expands
the conventional tensor partition technique from the training on
SCGs to DCGs.

Dynamic Tensor Evicting (DTE) is an adaptive strategy for
releasing tensors during the runtime. When the VM instructions
are executed, MegTaiChi tracks the execution sequence of OPs, and
records the execution information, e.g., the history of memory allo-
cation and deallocation, memory access time, each tensor’s ancestry
and other metadata. Once the out of memory (OOM) occurs, DTE
would determine which tensors should be released and whether
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Figure 2: MegTaiChi Overview.

to choose swapping or recomputing for the selected tensors. As
shown in Panel ❷ of Figure 2, before the execution of the original
OP4: 𝑎 ∗ 𝑏 = 𝑐 , the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑒𝑚𝑜𝑟𝑦 > 𝑡ℎ𝑟𝑒_𝑠ℎ𝑜𝑙𝑑 appears, which
indicates that OOM happens. Immediately, the Autoe_vict() instruc-
tion is generated inserted into the VM instruction queue, which
releases some tensors from memory based on DTE. In addition, if
the memory access failure occurs, the needed tensors missing in
memory would be regenerated by the corresponding rematerial-
ization methods which are marked at their evicting moment. It is
worth mentioning that DTE fully exploiting the advantages of both
the swapping and recomputing methods for memory management
on DCGs.

Tensor Memory Allocation (TMA) is a fine-grained method
for assigning memory address to all the tensors. If the architecture
of DNN model is fixed during the training process, the DCG would
be invariable even though it is generated dynamically. During the
first five training iterations, MegTaiChi captures the important in-
variable characteristics of DCGs, e.g. the life span of intermediate
tensors at a training iteration, by tracing the VM instruction se-
quence. Based on the invariable characteristics of DCGs, TMA can
establish a fine-grained memory allocation plan which would be
adopted in the following epochs until the end of training process.
As shown in Panel ❸ of Figure 2, using the memory requirement
information, TMA simulates the memory allocation process and ad-
justs the starting address of some tensors in the simulation, which
leads to a topological map specifying the dependency relationship
between all the tensors on time and space dimension degrees. Based
on the topological map, TMA can generate a near-optimal memory
allocation plan by leveraging a sort algorithm. It is worth men-
tioning that TMA successfully reduce the memory peak value and
avoids the generation of memory fragments.

The three components are coordinated by a VM interpreter. Dur-
ing the iteration, the interpreter invokes DTP inference and exe-
cutes the corresponding instructions for tensor partition. If OOM
is triggered in execution, the interpreter would generate a DTE
instruction for acquiring enough memory dynamically. After the
memory access sequence is cached, the interpreter could apply
TMA to plan the memory allocation.

3.3 Challenges
3.3.1 How to Partition Tensors onMultiple Machines. In major deep
learning frameworks, the tensor partition plans are usually defined
before the execution and fixed during the training. Hence, the
tensor partition design is difficult to take into account the runtime
information, while the runtime information essentially determines
the tensor rematerialization plan [18]. To change this situation,
this work trends to develop a dynamic tensor partition strategy
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Figure 3: Panel (a) and Panel (b) show the performance of
ResNet-18 training. MP-R and MP-C represent model par-
allelisms based on row and column partitions respectively.
Pane (c) shows the evaluation of different tensor evicting
schemes based on only one factor. Panel (d) shows the effect
of defragmentation procedures to the performance.

which can be adjusted according to the current memory usage
during the execution. Underlying the design of dynamic tensor
partition, our fundamental assumption is that data can be streamed
from a remote device at the same rate as from a local device. This
assumption holds true for clusters of modest size, which is the
environment targeted by MegTaiChi. Recent work on datacenter
networks suggests that this assumption also holds on a larger scale
[10, 20]. Under this assumption, the network is never the bottleneck.
In this case, the memory usage becomes improtant, which affects
the final performance. As Figure 3(a)-(b) shown, MP-R is slightly
slower than MP-C, but MP-R consumes smaller memory, which
could lead to higher throughput and final performance. Hence, the
design of DTP needs to balance the execution time and memory
usage.

3.3.2 How to Evict Tensors from On-device Memory. For the tensor
rematerialization, the swapping and recomputing methods have
been widely used. In this work, DTE tries to combine the swapping
and recomputing together. For each tensor, many factors would
affect the prediction whether the resident tensor may be least valu-
able and should be evicted, such as staleness (the time since last
access the tensor), memory (the size of the tensor), and the recom-
puting cost (time required to compute the tensor from its parent
tensors). Figure 3(c) shows the evaluation of different tensor evict-
ing schemes each of which is heuristic based on only one factor. It is
clear that these factors alternately become the primary in different
cases. Hence, the design of DTE should investigate the whole effect
of major factors. Besides, to reduce the memory fragments, DTE
should take into account the variation among the same size tensors
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stored at different spatial positions of memory, which is ignored by
related works [18, 18, 22].

3.3.3 How to Allocate Memory Space for All the Tensors. The tensor
partition and rematerialization usually involve repeated allocating
and releasing data, which would result in a mass of memory frag-
ments and affect the memory usage. For example, although the
family of ResNet models can be stored in the on-device memory of
a single GPU, the training with large batch sizes still needs defrag-
mentation procedures to keep the workflow continuing. However,
the defragmentation procedure must affect the execution overhead
as Figure 3(d) shown. In order to make full use of the memory space,
this work would investigate the memory allocation for each tensor.
The design of TMA is motivated by an attractive observation that
different training iterations in the same stage share a large amount
of or even all of the tensors, which means that the training has
extremely good inter-task data locality. Inspired by this fact, Meg-
TaiChi would try to avoid the generation of memory fragments and
reduce the peak memory usage by leveraging the traced memory
access sequence to guide the fine-grained memory allocation.

4 IMPLEMENTATION OF MEGTAICHI
4.1 Dynamic Tensor Partition
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Figure 4: Four Efficient Tensor Partition Patterns.

Formal Representation: In the neural network training, if the
input and output variables of each operator (or layer) is written in
the matrix form, the forward phase is a sequential combination of
affine transformation Y = X×W, followed by nonlinear transforms
X′ = 𝑔(Y) in which 𝑔 is a nonlinear correction function (such
as ReLU or Sigmoid function), and each column of X holds input
activation tensors for one sample, and similarly each column of
Y holds output activation tensors for one sample. X and Y have
the same shape. The matrix W holds the weights of the neural
network between the current layer and the next one. Denote 𝑐 as the
current layer’s number of neurons (or the tensor dimension), and
𝑏𝑠 represents the batch size. Similarly, the backward propagation
can also be written in matrix form as 𝑑X = W𝑇 × 𝑑Y. Here, 𝑑X
and 𝑑Y are the gradients of the loss function with respect to X
and Y respectively. Meanwhile, the gradient of the loss function
with respect to model weights W is calculated as 𝑑W = X𝑇 × 𝑑Y.

Table 1: The Inter-operator Collective Communication.
P1 P2 P3 P4

P1 None None Alltoall Allgather
P2 None None Alltoall Allgather
P3 ReduceScatter RedcueScatter ReduceScatter Allredcue
P4 Alltoall Alltoall None Allgather

Consequently, the tensor partition on each layer involves the three
matrix multiplications above.

Pattern Abstraction: In this work, we deeply investigate all
commonly used tensor partitions, and abstract four efficient pat-
terns, as shown in Figure 4. Pattern 1 partitions X and Y respec-
tively along the row dimension, which is usually called as data
parallel partition. Under Pattern 1, the forward pass needs no com-
munication between different devices, while the backward pass has
to use Allreduce communication procedure to obtain the whole 𝑑W.
Pattern 2 partitionsW, X and Y respectively along the row dimen-
sion. As different parts of W are distributed on multiple devices,
the forward pass needs to collect them using Allgather procedure.
During the backward pass, each device updates the parts ofW in-
dependently, which involves ReduceScatter procedure. When the
size of W is large, a considerable amount of memory can be saved
for each device. Pattern 3 partitions W along row, and partition X
along column dimension. In the forward pass, each device needs
Allreduce procedure to obtain the whole Y. But, the backward pass
does not need collective communication. Pattern 4 partitions W
and Y respectively along column dimension. Under Pattern 4, the
forward pass involves no communication, while the backward pass
has to collect different parts of 𝑑W to devices using Allreduce pro-
cedure.

In Addition, Figure 4 summarizes the required intra-operator
communication procedures for four patterns in forward, backward
and gradient update processes (Parallel arrow indicates that no
communication is needed). If two adjacent operators use different
tensor partition patterns, the additional communication is needed
to switch partition patterns from Pattern 𝑘1 for the current operator
to Pattern 𝑘2 in the next operator during the forward pass (1 ≤
𝑘1, 𝑘2 ≤ 4). Besides, the communication procedures needed for
pattern switch are shown in Table 1.

Dynamic Tensor Partition: To achieve high throughput in the
training process, it is improtant to balance the execution cost and
the memory consumption that would affect the concurrency, i.e.,
batch size. For the 𝑖-th operator 𝑜𝑖 , we denote 𝑝𝑘𝑖 as the partition
configuration which represents using Pattern 𝑘 to partition the
data of 𝑜𝑖 . With Pattern 𝑘 , the total execution time 𝑡 (𝑜𝑖 , 𝑝𝑘𝑖 , 𝑏𝑠) and
memory cost𝑚(𝑜𝑖 , 𝑝𝑘𝑖 , 𝑏𝑠) of the 𝑖-th operator can be represented
as follows

𝑡

(
𝑜𝑖 , 𝑝

𝑘
𝑖 , 𝑏𝑠

)
= 𝑡𝑐

(
𝑜𝑖 , 𝑝

𝑘
𝑖 , 𝑏𝑠

)
+𝑡𝑖𝑛𝑡𝑟𝑎

(
𝑜𝑖 , 𝑝

𝑘
𝑖 , 𝑏𝑠

)
+𝑡𝑖𝑛𝑡𝑒𝑟

(
𝑝𝑘𝑖 , 𝑝

𝑘′
𝑖−1, 𝑏𝑠

)
,

and

𝑚

(
𝑜𝑖 , 𝑝

𝑘
𝑖 , 𝑏𝑠

)
=𝑚𝑝

(
𝑜𝑖 , 𝑝

𝑘
𝑖 , 𝑏𝑠

)
+𝑚𝑡

(
𝑜𝑖 , 𝑝

𝑘
𝑖 , 𝑏𝑠

)
+𝑚𝑖𝑛𝑡𝑒𝑟

(
𝑝𝑘𝑖 , 𝑝

𝑘′
𝑖−1, 𝑏𝑠

)
,

where 𝑡𝑐 represents the time taken to conduct the computation
defined by operators. 𝑡𝑖𝑛𝑡𝑟𝑎 and 𝑡𝑖𝑛𝑡𝑒𝑟 are the intra and inter op-
erator communication costs respectively. 𝑚𝑝 is the memory for
storing the (partitioned) model parameter, and𝑚𝑡 is the memory
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for intermediate tensors, and𝑚𝑖𝑛𝑡𝑒𝑟 is the memory for intermedi-
ate tensors generated by the pattern switching from Pattern 𝑘 ′ for
𝑜𝑖−1 to Pattern 𝑘 for 𝑜𝑖 . Note that all the time and memory costs at
the right-hand side of two equations above can be measured and
recorded during the training, and they are the functions of batch
size 𝑏𝑠 due to the batch size determining the size of intermediate
tensors.

DTP is a heuristics that selects Pattern 𝑘∗
𝑖
for the tensor partition

of 𝑜𝑖 by solving an optimization problem

𝑘∗𝑖 = argmin
𝑘∈{1,2,3,4}

𝜆 ·𝑚
(
𝑜𝑖 , 𝑝

𝑘
𝑖 , 𝑏𝑠

)
+ (1 − 𝜆) · 𝑡

(
𝑜𝑖 , 𝑝

𝑘
𝑖 , 𝑏𝑠

)
, (1)

where 𝜆 is a constant satisfying 0 ≤ 𝜆 ≤ 1. Note that 𝜆 can be
adjusted by users.

4.2 Dynamic Tensor Evicting
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·Automatic Evict
while CurrentMemoryUsage > memorybudget do
    foreach cand in candidates do
        find the optimal tensor t to be evicted;
        remove t from candidates;
        evicted t;
        foreach nb in t.neighbor do
            if nb is evicted then
            merge the evicted set where nb is located with t;
            update the cost of the merge set with the sum of each 
constituent cost;
            end
        end
    end
end

· Recompute
foreach i in inputs do
    if i is evicted then
            cmd.add(Recompute(i.op, i.inputs));
    end
end
AutomaticEvict();
outputs <- LaunchKernel(op, inputs);
foreach o in outputs do
    if o is evicted then
            add o to candidate set;
            delete o from the evicted set where o is located;
            subtract the computing cost of o from the cost of the 
original set;
    end
end

Automatic Evict & Recompute7

Figure 5: Tensor Evicting Mechanism.

As mentioned earlier, it is necessary to select and evict some ten-
sors when there is not enough free memory for the current operator
to execute. For tensor evicting, the major technique is the tensor
rematerialization which includes two different methods: recomput-
ing and swapping (as shown in Panel ❶ and ❷ of Figure 5). Recent
works just focused on the memory management on a single device,
and ignored the serious memory fragmentation caused by evicting
tensors repeatedly from the on-device memory. The design of DTE
is to solve two issues: (1) how to manage the on-device memory
on multiple devices; (2) how to determine which tensors should be
evicted from the on-device memory by the recomputing method or
the swapping to avoid the generation of memory fragments.

Memory Management Mechanism: The training on multiple
devices involves both computation and communication. The gradi-
ents of different layers’ tensors commonly arriving at the current
GPU out of order, makes it difficult to predict the consumption of
memory. To develop DTE for the training on multiple devices, we

propose a memory regional management mechanism. (1) Firstly,
we divide the on-device memory of each device into two regions,
i.e.𝑚 =𝑚1 +𝑚2. The first region is reserved for the communication
between devices to store the gradients, while the other one is used
for the computation process on the current device. (2) Next, during
the training, the received gradients are placed on the first memory
region which is set large enough to store the gradients of all the
parameters and 1/𝑝 of the largest layer’s input and output tensors
across 𝑝 devices. (3) Finally, we define a memory threshold 𝑚∗ for
the usage of the second region 𝑚2. If the memory consumption
of the second region is larger than𝑚∗, we would select and evict
some tensors until the consumed memory is less than𝑚∗, which
means that the memory space with size of𝑚2 −𝑚∗ is reserved for
the execution of current operator.

Tensor Evicting Mechanism: In each iteration, the metadata
for each tensor 𝑡 can be tracked, such as Staleness 𝑠 (𝑡) (time since
last access), Memory 𝑚(𝑡) (tensor size), Cost 𝑐 (𝑡) (time required
to calculate 𝑡 from its parent tensors based on its computational
path) Recomputing times 𝑟𝑒𝑡 (𝑡) (tensor recomputing times). In
the design of DTE, we tend to evict the tensor 𝑡 which is stalest
(to prioritize the evicting of tensor that is least recently used, see
Panel ❸ of Figure 5), largest (to save as much memory as possible),
cheapest (to minimize the additional recomputing cost), and least
frequent (to avoid incessant tensor recomputing which may bring
heavy overhead, see Panel ❹ of Figure 5).

We use𝑀 to denote the set that consists of all the current tensors
stored in the on-device memory. For each tensor 𝑡 ∈ 𝑀 , we denote
its 𝑒𝑣𝑖𝑐𝑡𝑒𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑠𝑒𝑡 asN(𝑡) (refer to Panel❺ of Figure 5), which
is the set of evicted tensors that would either need to be recomputed
to obtain 𝑡 again or would need 𝑡 to be resident to be recomputed.
For a candidate tensor 𝑡 to be evicted, its recomputing cost C𝑟 (𝑡)
can be estimated byC𝑟 (𝑡) = 𝑐 (𝑡)+∑𝜏 ∈N(𝑡 ) 𝑐 (𝜏), while its swapping
cost C𝑠 (𝑡) can be quantified as the time for loading 𝑡 from the out-
device memory to on-device memory. Let𝑚(𝑡) be the the size of
𝑡 , and 𝛾 be the bandwidth between the out-device memory and
on-device memory, we have C𝑠 (𝑡) =𝑚(𝑡)/𝛾 .

In order to decrease the on-device memory fragments generated
by repeated evicting tensors, we prioritize the select and release
of those tensors whose evicting would not generate new memory
fragments. For instance, there are two tensors as candidates for
evicting, and the candidate should acquire a relatively higher freeing
priority if its left and right neighbors have been already freed from
the memory. For a tensor 𝑡 , we denote 𝑀𝑙𝑒 𝑓 𝑡 (𝑡) and 𝑀𝑟𝑖𝑔ℎ𝑡 (𝑡) as
the sizes of 𝑡 ’s left and right free memories respectively, and tend to
evict the tensor 𝑡 whose𝑚(𝑡) +𝑀𝑙𝑒 𝑓 𝑡 (𝑡) +𝑀𝑟𝑖𝑔ℎ𝑡 (𝑡) is larger (Panel
❻ of Figure 5). As Panel ❼ of Figure 5 shown, DTE is to repeatedly
evict tensors by minimizing the following cost until there is enough
free memory for the execution of current operation,

min
𝑡 ∈𝑀

min(C𝑟 (𝑡),C𝑠 (𝑡)) · 𝛽𝑟𝑒𝑡 (𝑡 )(
𝑚(𝑡) +𝑀𝑙𝑒 𝑓 𝑡 (𝑡) +𝑀𝑟𝑖𝑔ℎ𝑡 (𝑡)

)
· 𝑠 (𝑡)

. (2)

Specifically, 𝛽 is chosen as an empirical value of 0.5. For the se-
lected 𝑡 to be evicted, we compare the recomputing cost C𝑟 (𝑡) and
swapping cost C𝑠 (𝑡). If C𝑟 (𝑡) is smaller, the tensor recomputing
would be chosen for evicting and regenerating 𝑡 . Otherwise, the
swapping would be applied.
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4.3 Tensor Memory Allocation
Assume that there are 𝑁 memory allocation requests in the task
queue. The 𝑖-th request can be described as a quadruple 𝑟𝑖 =

(𝑠𝑖 , 𝑒𝑖 ,𝑚𝑖 , 𝑎𝑖 ) (𝑖 = 1, 2, · · · , 𝑁 ), where 𝑠𝑖 and 𝑒𝑖 represent the al-
location and deallocation moment of the 𝑖-th request respectively,
and𝑚𝑖 is its memory size, and 𝑎𝑖 is the undetermined starting mem-
ory address for 𝑟𝑖 . Each memory access request involves memory
allocation denoted as (Allocation, 𝑠𝑖 , 𝑚𝑖 ) and memory dealloca-
tion denoted as (Deallocation, 𝑒𝑖 ,𝑚𝑖 ), which are arranged in the
chronological order. If two requests 𝑟𝑖 and 𝑟 𝑗 satisfy either 𝑠𝑖 ≤ 𝑒 𝑗
or 𝑠 𝑗 ≤ 𝑒𝑖 , they conflict with each other in time. If 𝑟𝑖 and 𝑟 𝑗 meet
the condition 𝑎𝑖 ≤ 𝑎 𝑗 +𝑚 𝑗 or 𝑎 𝑗 ≤ 𝑎𝑖 +𝑚𝑖 , they have the space
conflict. The design of TMA is to minimize the maximal memory
footprint under the condition that there is no space conflict for any
two requests which conflict in time. Our proposed TMA includes
three steps:

Step 1: Before the training starts, six efficient memory man-
agement rules are established. As shown in Figure 6, they are (1)
Alloc(Panel ➊); (2) Alloc & Division(Panel ➋); (3) Swell(Panel
➌); (4) Free(Panel ➍); (5) Free & Merge(Panel ➎); (6) Overwrite &
Free(Panel ➏).

Step 2: During the first several iterations, the tensor access infor-
mation is collected, e.g., memory request, data dependency, etc. The
information embodies the invariable memory access characteristics
on DCG even though DCG is built dynamically.

Step 3: Based on the collected information, the tensor access
process is simulated, and six rules are applied to the tensor access
simulation for rearranging of tensor positions. The simulation re-
sults would lead to the optimal memory chunk address for each
tensor.
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Figure 6: Six Efficient Memory Management Rules.

Figure 7 shows an example to illustrate how TMA applies six
rules to a memory access simulation. Using the collected memory
request and data dependency, we can obtain a memory access se-
quence, i.e., Alloc/Free Sequence as shown in Figure 7. For each
request in the sequence, one of the six rules is selected to perform
it. A linked-listMemory List records the memory usage, where each
block represents a memory chunk for some tensor, and𝑚𝑖 means
the memory chunk size. The orange and green colors represent alloc
and free respectively. The linked-list 𝐼𝑑𝑙𝑒𝐿𝑖𝑠𝑡 records the free mem-
ory chuck. During the simulation, the relative positions of memory
chunks are recorded by a topology graph. Based on the topology
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Figure 7: Memory Access Simulation. The memory list
records the memory usage, and the idle list records which
memory chunk is free (sorted by size).

graph, we define 𝐹𝑟𝑜𝑛𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑁 ), which is a array contains
all frontend non-empty chunk indices of the 𝑖-th request at some
moment. The starting address of the 𝑖-th request 𝑟𝑖 is determined
based on 𝑓 𝑟𝑜𝑛𝑡𝑖 .

As Figure 7 shown, there are 9 memory requests in the Alloc/Free
sequence, and each request is implemented in a simulation stage.
At the beginning of the memory access simulation, the memory
list is empty. At the first two stages, the requests (Allocation,𝑚1)
and (Allocation,𝑚2) are implemented based on Rule ➊. As𝑚1 is in
front of𝑚2, we get 𝑓 𝑟𝑜𝑛𝑡2 = {1}. Next, the request (Deallocation,
𝑚1) is implemented by Rule ➍ at the third stage, and (Allocation,
𝑚3) is simulated using Rule ➋ at the fourth stage. At the same time,
the set 𝑓 𝑟𝑜𝑛𝑡2 updates to 𝑓 𝑟𝑜𝑛𝑡2 = {1, 3}. At the fifth stage, as the
idle chunk is small than𝑚4, Rule ➌ is selected to implement the
request (Allocation,𝑚4). 𝑓 𝑟𝑜𝑛𝑡2 is changed into 𝑓 𝑟𝑜𝑛𝑡2 = {1, 4}, and
𝑓 𝑟𝑜𝑛𝑡4 is built as 𝑓 𝑟𝑜𝑛𝑡4 = {3}. Similarly, the remained requests
are implemented stage by stage. The simulation process would
generate the final topology graph and the sets 𝑓 𝑟𝑜𝑛𝑡𝑖 . Based on
𝑓 𝑟𝑜𝑛𝑡𝑖 , the starting memory address for the 𝑖-th request can be
determined. Specifically, if 𝑓 𝑟𝑜𝑛𝑡𝑖 = ∅, set 𝑎𝑖 = 0. Otherwise, let
𝑎𝑖 = max𝑗 ∈𝑓 𝑟𝑜𝑛𝑡𝑖 {𝑎 𝑗 +𝑚 𝑗 }.

In addition, we can prove that the rule-based simulation above
results in the optimal memory allocation which could minimize
the maximal memory footprint under the condition that there is
no space conflict for any two requests which conflict in time.

4.4 Overhead Analysis
In the following, we analyze the overhead of MegTaiChi, which
includes the costs of DTP, DTE and TMA on DCG.

First, the cost of DTP mainly involves the runtime overhead of
individual tensor partition inference and the overhead of data redis-
tribution. On the one hand, as there are only 4 candidate solutions
for the optimization problem (1), the overhead for tensor partition
inference can be negligible compared to the runtime of each itera-
tion. On the other hand, the overhead of data redistribution mainly
is taken for changing the partition pattern of the current operator’s
weights from one kind to another. For example, assume that the
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Table 2: Data redistribution cost for the tensor partition pat-
tern switching. 𝑝 is the number of devices, and |𝑇 | represents
the size of a global tensor 𝑇 .

Original Pattern Current Pattern inferred by DTP
P1 P2 P3 P4

P1 0 0 0 0
P2 𝑂 ( (𝑝 − 1) · |𝑇 |) 0 0 𝑂

(
𝑝−1
𝑝 |𝑇 |

)
P3 𝑂 ( (𝑝 − 1) · |𝑇 |) 0 0 𝑂

(
𝑝−1
𝑝 |𝑇 |

)
P4 𝑂 ( (𝑝 − 1) · |𝑇 |) 𝑂

(
𝑝−1
𝑝 |𝑇 |

)
𝑂

(
𝑝−1
𝑝 |𝑇 |

)
0

tensor partition pattern of 𝑂𝑃𝑖 is P3 at the last iteration, and DTP
infers the tensor partition pattern of 𝑂𝑃𝑖 as P1 at the current iter-
ation. MegTaiChi needs to perform an Allgather communication
to change the partition pattern of the relevant weights for 𝑂𝑃𝑖
from P3 to P1 before executing 𝑂𝑃𝑖 . Denote the size of the global
tensor 𝑇 (weights) for 𝑂𝑃𝑖 as |𝑇 |. The required overhead for the
data redistribution is about 𝑂 ((𝑝 − 1) · |𝑇 |). Table 2 shows all the
possible scenarios of the cost for data redistribution. By the way,
the tensor partition pattern of an operator switches from P1 to any
others, which involves no communication.

Next, the overhead of DTE includes two parts: the cost for search-
ing the tensors to evict, and the cost for tracking and maintaining
meta-data for each tensor in the candidate set. For searching tensors
to evict, DTE has to traverse all the candidate tensors once to score
each tensor and find the optimal tensor with the minimum score,
which is time-consuming. For tracking the meta-data of each tensor,
DTE needs to update and maintain the metadata of the residual
tensors in the evicted candidate set, whose overhead can be hidden
during the training process.

Finally, the overhead of TMA can be negligible, because TMA is
executed only once after the warm up phase, and its main cost is for
sorting the topology graph, whose time complexity is𝑂 (𝑁 log(𝑁 ))
for 𝑁 memory allocation requests.

5 EVALUATION
5.1 Platform and Workload
Platform: Our experiment is performed on a modest cloud cluster,
and the configuration is shown in Table 3.

Table 3: The Platform Configuration.
Number of Nodes (Machines) 32
Number of GPUs 256
GPU Nvidia RTX 2080Ti (PCIe)x4 (16 GiB)
CPU Intel(R) Xeon(R) E5-2650 v3 (32 GiB×8)
CPU-GPU Interconnect PCI-Express Gen3x16 (16 GB/s)
GPU-GPU Interconnect PCI-Express Gen3x16 (16 GB/s)
System Interconnect 25Gb Ethernet x 2 ( 6GB/s)

The experiment is running on Ubuntu 18.04. CUDA Toolkit ver-
sion is 10.0, and cuDNN is 7.3.1. MegTaiChi is developed based on
MegEngine 1.7 which is an open source imperative DL framework
[1]. The evaluation focuses on the comparison of MegTaiChi with
the state-of-the-art works, i.e., Capuchin [22], DTR [18] and Sub-
linear [6]. Capuchin is the state-of-the-art work proposing the
swapping for tensor rematerialization, and DTR and Sublinear
are the state-of-the-art works developing the recomputing. As Ca-
puchin is not open source, we implement it as Meg-Capuchin using
MegEngine. Meg-Capuchin can not run on multiple GPUs because

its design applies only to single GPU. DTR and Sublinear are open
source. And the original DTR is denoted as Pytorch-DTR which
also can not run on multiple GPUs. In order to compare DTE with
DTR on multiple GPUs, we develop Meg-DTR based on MegEngine.
Table 4 presents all the methods in the evaluation.

In MegTaiChi, DTP, DTE and TMA can work individually and
coordinate with each other. DTP and DTE can support both static
and dynamic networks. If the neural network architecture is fixed,
TMA can manage the memory allocation in fine-grain.

Workload: We evaluate MegTaiChi on the DNNs shown in Table
5, including nine representative DNNs with fixed architectures and
two DNN with unfixed architecture changing during the training.

Table 4: The Methods using in the evaluation.
Symbol Definition

Meg-Capuchin Our implementation of Capuchin [22] on MegEngine.
Pytorch-DTR Open source version of DTR [18] on Pytorch.
Meg-DTR Our implementation of DTR [18] on MegEngine.
Sublinear Open source version of Sublinear [6] on Pytorch.
MegEngine-dir Directly apply MegEngine to training DNN.
DTP Dynamic Tensor Partition.
DTE Dynamic Tensor Evicting.
TMA Tensor Memory Allocation.
DP Date Parallelism Strategy.
MP Model Parallelism Strategy.
DP+MP Empirical strategy using DP and MP for different layers.

Table 5: DNN Models for Evaluation.
Model Type Architecture Num. of Param.
ShuffleNet[34] CNN fixed 2.3M
VGG-16[12] CNN fixed 138M
ResNet-50[12] CNN fixed 25.6M
ResNet-101[12] CNN fixed 44.5M
ResNet-152[12] CNN fixed 60.2M
Bert-base[7] Transformer fixed 110M
SPOS[11] CNN unfixed 3.4M
Global Local (GL)-base CNN fixed 100M
Global Local (GL)-large CNN fixed 1.5B
GPT[5] Transformer fixed 1.3, 2.6, 6.7, 12(B)
MoE[19] MoE unfixed 0.35, 1.3, 2.4, 8(B)

∗ Both GPT and MoE have four sizes, because the two models become larger with
the number of GPUs increasing from 1 to 8 in the weak scalability tests.

5.2 Evaluation of DTP
For the evaluation of DTP, we select four DNN models, as shown
in Figure 9. Compared with DP, the contribution of DTP on per-
formance improvement is slight for ResNet-50 model, while DTP
achieves 1.3×, 1.4× and 1.5× performance speedups for VGG-16,
GL-base and GL-large models respectively. The main reason is that
ResNet-50 is a convolution-dominated network where each convo-
lution layer is usually small and prefers data parallelism (essentially
Pattern 1). However, VGG-16, GL-base and GL-large models all con-
tain many fully-connected layers. We find DTP adaptively applies
Pattern 1 for convolution layers, Pattern 3 and Pattern 4 for fully-
connected layers, which leads to the performance improvement.
5.3 Evaluations of DTE and TMA
For the evaluations of DTE and TMA, the test results on single GPU
and multiple GPUs are presented separately. In this section, the
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Figure 8: Evaluations on a Single GPU. Meg-Capuchin, Pytorch-DTR and Meg-DTR are three baselines.
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Figure 9: Evaluation of DTP.

tests on multiple GPUs do not involve DTP, while DP is applied for
the tensor partitions of all the layers.

5.3.1 Test Results on Single GPU. We compare the throughputs
of Meg-Capuchin, Pytorch-DTR, Meg-DTR, DTE and TMA on the
training of 5 DNN models. Before the comparison, we evaluate
the performance of two deep learning frameworks Pytorch and
Megengine. By running 10 iterations of the ResNet-50 training, two
frameworks achieve almost the same performance with small gap
less than 10 ms, which help us focus on the comparison of different
methods.

As shown in Figure 8, DTE achieves about 1.5× and 1.23× perfor-
mance speedups on average compared with Capuchin and Pytorch-
DTR respectively. Further, by cooperating DTE with TMA, the aver-
age throughput improvements increase to 1.6× and 1.5× faster than
Capuchin and Pytorch-DTR respectively. We have three important
observations from the experiment results.

First, for the training of Bert-base model, the throughputs of dif-
ferent methods are increasing as the batch sizes increases from 20
to 100, because the free memory is relatively abundant during this
process. With the continuous increase of batch sizes from 100 to 140,
the throughputs decrease monotonically. This is because the tensor
swapping/recomputing operations occur frequently when the free
memory becomes insufficient, which affects the execution efficiency.
The training of ShuffleNet model follows the similar trend. How-
ever, for ResNet-50, ResNet-152 and GL-base, the smallest batch
sizes results in insufficient free memory. Hence, the throughputs of
different methods decrease with the increase of batch sizes.

Table 6: Recomputing and swapping costs for a conv-BN-
relu block on 1 GPU and 8 GPUs.

Batch Sizes Recomputing Cost (ms) Recomputing Swapping
Convolution layer BN layer Relu layer Frequency Cost (ms)

32 (24.5 M) (0.12, 0.12) (0.19, 0.20) (0.10, 0.11) (0, 0) (2.18, 7.98)
64 (49 M) (0.22, 0.22) (0.34, 0.36) (0.20, 0.21) (0, 0) (4.36, 43.11)
128 (98 M) (0.41, 0.41) (0.64, 0.67) (0.39, 0.39) (2, 2) (8.71, 26.22)
256 (196 M) (0.81, 0.81) (1.23, 1.24) (0.77, 0.78) (2, 3) (17.41, 52.26)

Here, (𝑎,𝑏) shows test results 𝑎 and 𝑏 on 1 GPU and 8 GPUs respectively.

Second, as shown in Table 6, the execution time of the swapping
is dozens of the cost for recomputing on our platform. As Capuchin
does not make full use of the runtime meta-information of the
tensors to determine the recomputing plan, Meg-Capuchin is slower
than Pytorch-DTR and Meg-DTR.

Third, compared with Pytorch-DTR andMeg-DTR, DTE achieves
about 1.24× and 1.22× performance speedup on average respec-
tively. This mainly owes to the design of DTE which takes the
impact of memory fragmentation into account. Reducing the gen-
eration of memory fragmentation can decrease the frequency of
tensor evicting operations, resulting in the performance improve-
ment. Further, by coordinating DTE and TMA, i.e., DTE+TMA, the
memory usage follows a fine-grained allocation, and the higher
performance speedup can be achieved.

5.3.2 Test Results on Multiple GPUs. Figure 10 shows the test re-
sults on 8 GPUs. Compared with Meg-DTR, DTE achieves 1.6×
speedup on average. Further, coordinating DTE and TMA can ob-
tain 1.4× performance improvement compared with only using
DTE. This is because DTE+TMA achieves a fine-grained memory
allocation so that the memory fragmentation is further reduced and
the evicting operation becomes less frequent. It should be noted
that the throughputs of different methods follow the similar change
trends with the increase of batch sizes whenever using a single GPU
or 8 GPUs, while the throughput on 8 GPUs is obviously higher
than that on a single one.

5.4 Evaluation on Dynamic Network Models
For dynamic models, the execution sequence of operators is not
fixed. In the related works, only DTR [18] can support the training
of dynamic neural networks currently. Hence, the evaluation on
dynamic models focuses on the comparison of DTE with DTR and
Meg-DTR.
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Figure 10: Evaluations on 8 GPUs. The bars with slashes mean that the relevant methods can not run on multiple GPUs, e.g.,
Meg-Capuchin and Pytorch-DTR.

Figure 8 and Figure 10 show the performances of different meth-
ods for the training of two dynamic models, i.e., SPOS and MoE.
Compared with Pytorch-DTR and Meg-DTR, DTE achieves 1.3×
and 1.4× performance speedups on average respectively. Further,
the improvement advantage of DTE over 8 GPUs is higher than
that on a single GPU. It is worth mentioning that, DTR [18] just
consider tensor rematerialization on single GPU. However, Meg-
TaiChi extends dynamic tensor rematerialization to multiple GPUs
and reduces memory fragmentation.

5.5 On Memory Usage
Figure 11 shows the memory usage at any moment of each training
iteration using TMA and Pytorch-DTR. In each panel of Figure 11, X-
axis and Y-axis represent thememory address and the time sequence
respectively. Along X-axis, the leftmost grey region is for storing
the model parameters and gradients (the first region𝑚1 mentioned
in Section 4.2), and the color region is for tensors taking part in the
current computation (the second region𝑚2 mentioned in Section
4.2). It is clear that, compared with Pytorch-DTR, TMA results in
less memory fragments. Due to this fact, the peak memory usage is
reduced by 11% for ResNet-50 and 10.5% for GL-base respectively,
which is a significant achievement for the memory optimization
based on DCG [6, 18, 22].

With the continuous increase of batch sizes, we find that OOM
would occur even though DTR is applied. As shown in Table 7,
when the batch sizes increases to 400 on a single GPU, the training
of ResNet-50 model has to leverage the defragmentation procedure
to enable the execution continue. To generate a new and complete
free memory space which should be sufficient for the current ex-
ecution, the defragmentation procedure involves the reallocation
of all the data in the on-device memory and puts all the memory
fragments together, which is time consuming. Table 7 presents that
the cost of one defragmentation procedure is beyond one thousand
milliseconds on average, which affects the execution overhead se-
riously. From Table 7, it is clear that Pytorch-DTR still has to call
the defragmentation procedure multiple times per 10 iterations for
the training of different models with large batch sizes. However, in
the same cases, TMA successfully avoids the defragmentation. This
fact proves again that TMA could effectively reduce the generation
of memory fragments due to the fine-grained memory allocation.

Table 7: Defragmentation costs.

Model Batch Sizes
Defragmentation

Average execution cost Frequency per 10 iterations
of one defragmentation Pytorch-DTR TMA

ResNet-50 400 1367 ms 19 0
ResNet-101 300 1605 ms 6 0
ResNet-152 300 1471 ms 9 0
GL-base 90 1048 ms 10 0
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Figure 11: Memory usage within each iteration. The grey re-
gions forResNet-50 are imperceptible since thememory size
storingmodel parameters and gradients is only about 90MB.

5.6 Evaluation of MegTaiChi
In this section, we evaluate MegTaiChi’s overhead, we compare
MegTaiChi with Sublinear [6] which is famous for its memory
optimization to support the large batch training on a single GPU,
and then we apply MegTaiChi to the training of a large-scale face
recognition mode.

5.6.1 Runtime Overhead of MegTaiChi. As Figure 12 shown, the
runtime overhead of MegTaiChi is less than 5% of the runtime of
each iteration. From Figure 12, we obtain three observations.

First, the overhead of MegTaiChi on a single GPU is smaller than
that on multiple GPUs, because DTP is unnecessary for the training
on a single GPU.
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Second, compared with the networks such as ResNet-50, ResNet-
152 and SPOS, GL-base network contains more fully-connected
layers and less convolution layers, which involves more communi-
cation and memory usage costs. Therefore, the overhead of Meg-
TaiChi for the training of GL-base model increases to about 1.5
times of the costs for the other networks.

Third, for the training of SPOS network, although SPOS is dy-
namic, the overhead of MegTaiChi introduced among all workloads
are less than 3%, and the average is 2.68%.

ResNet-50 ResNet-152

GL-base SPOS

Figure 12: Runtime overhead of MegTaiChi.

5.6.2 MegTaiChi vs. Sublinear. Figure 13 shows a comparison of
MegTaiChi with Sublinear in the training of ResNet-50, where the
memory threshold𝑚∗ increases from 4G to 6G (the𝑚∗ mentioned
in Section 4.2). We conclude three important observations from the
experiment results. First, for the same batch size, increasing 𝑚∗

enables the performance of MegTaiChi gradually become closer to
Sublinear. When𝑚∗ is set as 6G, MegTaiChi is slightly slower than
Sublinear, while the gap is less than 0.04s for each iteration. Second,
when the batch sizes are 100, 150 and 200 respectively, it is obvious
that MegTaiChi consumes less memory than Sublinear. Third, for
the training of ResNet-50 on a single GPU, the maximum batch size
for Sublinear is 200, while MegTaiChi supports larger batch sizes.
As Figure 13 shown, the memory consumption for MegTaiChi with
𝑏𝑠 = 300 is still less that for Sublinear with 𝑏𝑠 = 200.

Furthermore, Table 8 presents that MegTaiChi supports larger
maximumbatch sizes comparedwith the others.MegTaiChi achieves
the maximum batch sizes by up to 5× and 2.4× compared with
MegEngine-dir and Sublinear respectively on average.
Table 8: Maximum batch sizes supported by different methods.

Model MegEngine-dir Sublinear [6] MegTaiChi
ShuffleNet 200 550 950
ResNet-50 110 200 430
ResNet-152 50 130 300
GL-base 16 45 90
Bert-base 22 45 140
SPOS 50 N/A 350
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Figure 13:MegTaiChi vs. Sublinear in the training of ResNet-
50 model on a single GPU.

5.6.3 MegTaiChi vs. FlexFlow, Gshard and ZeRo-3. For the compar-
ison of MegTaiChi with FlexFlow, Gshard and ZeRo-3, the weak
scalability of different modules is evaluated by increasing the batch
size and model size along with the number of GPUs. As the model
sizes are different for different numbers of GPUs, it seems not rea-
sonable to use throughput as the metric, e.g., tokens per second.
Hence, we choose the aggregated peta floating-point operations
per second (PFLOPS) of GPUs as the evaluation metric by follow-
ing the suggestion from recent works [28]. As shown in Figure 14,
compared with FlexFlow, Gshard and ZeRo-3, MegTaiChi achieves
1.2×, 1.8× and 1.5× performance speedups respectively on average.

With the increase of the batch size and model size, the training
process needs more additional memory spaces for the data move-
ment between GPUs. From Figure 14, it is clear that FlexFlow and
Gshard fail to train the GPT model in the weak scaling test over 8
GPUs. In fact, FlexFlow and GShard try to exploit the parallelism of
multi-dimensional tensor partition on SCG. However, MegTaiChi
abstracts partition patterns to immediately generate the memory
optimization plan on DCG, leading to the better behavior on the
memory usage.

ZeRo-3 manages the memory usage by manually tuning tensor
rematerialization and tensor partition. Hence, it is able to train
the networks with larger batch size and model size. But, ZeRo-3
does not focus on the performance optimization of tensor rema-
terialization and tensor partition behaviors. Specifically, ZeRo-3
has to communicate all the gradients between GPUs. When the
gradients are larger than activations, its performance degenerates.
However, Megtaichi automatically combines tensor partition with
tensor rematerialization to determine the near-optimal memory
management plan on DCG, which could achieve higher perfor-
mance.
5.6.4 Training of Large-scale Face Recognition Models. The final
experiment evaluates MegTaiChi with the training of large-scale
face recognition models. The models are chosen from Global Local
family which includes GL-base and GL-large. In real applications,
GL-large supports more than one million face classification. The
architectures of GL-base and GL-large interleave convolution layers
and fully-connected layers. From Figure 15, we have four impor-
tant observations. First, DTP achieves 1.3× performance speedup
on average compared with the empirical strategy DP+MP. It is be-
cause DTP dynamically guides more reasonable tensor partition
by balancing the execution cost and memory usage at the runtime.
Second, the coordinated design of DTP and DTE achieves 1.2× per-
formance speedup on average compared with DTE. This mainly
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Figure 14: Weak scalability tests. The notation × presents
that the out of memory error occurs.

owes to the fact that DTE further achieves larger batch sizes within
the memory-limit constraint. Third, on average, TMA enables the
coordinated design of DTP and DTE further achieve 1.2× speedup
due to the fine-gained memory allocation which reduces the mem-
ory fragments and avoids the defragmentation procedure. Fourth,
by combining DTP, DTE and TMA together, MegTaiChi achieves
1.87× speedup on average compared with the empirical DP+MP.
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Figure 15: Training of Large-scale Face Recognition Models.

6 RELATEDWORKS
Tensor Partition: To facilitate deep learning model training, the
current deep learning frameworks, e.g., TensorFlow [2] and PyTorch
[21], provide well-supported data parallelism and vanilla model
parallelism by explicitly assigning operations to specific devices.
Mesh-TensorFlow [25] designs a special language for rewriting
DNN models to achieve the distributed training. Tofu [31] requires
developers to specify the tensor partition for operators using a
description language called TDL. Megtron [28] and DeepSpeed [23]
successfully couple the implementation of tensor model parallelism
with model programming. GShard [19] uses parallel annotations to
infer the partition of the remained tensors. However, these major
related works are based on SCG, and their tensor partitions are

built empirically before the execution. To the best of our knowledge,
MegTaiChi proposes a dynamic tensor partition to adjust the parti-
tion for each tensor on DCG during the training process. The design
of DTP takes the runtime information into account and provides
an opportunity for effectively coordinating the tensor partition and
tensor rematerialization techniques.

Tensor Rematerialization: The majority works perform mem-
ory optimization based on computation graph, including two cate-
gories, i.e., swapping and recomputation. For the swapping, vDNN
[24] and SuperNeurons [30] propose to swap the data out to the
CPU in forward phase and prefetch it at backward phase, which
enables the training of large models under restricted memory bud-
gets. SwapAdvisor [13] designs a genetic algorithm to automatically
generate the swapping plan based on SCG. Further, Capuchin [22]
represents the state-of-the-art work developing the swapping on
both SCG and DCG. It collects the information of tensor access
at runtime for memory management. On the other hand, for the
recomputing, Sublinear [6] proposes to release some tensors in the
forward propagation and recompute them during backward propa-
gation, which can train an N-layer linear feed-forward network on
O(

√
𝑁 ) memory budget with O(𝑁 log(𝑁 )) extra recomputation

cost. Sublinear well supports the training with large batch size
under limited memory constraint. Checkmate [14] analyzes the
training on SCG and constructs an integer linear programming to
find the optimal evicted tensors. To the best of our knowledge, DTR
[18] is the state-of-the-art work developing the recomputing on
DCG. DTR applies heuristics to guide its eviction choices during
the execution. However, the related works just focus on the tensor
eviction with cheap regeneration costs, while ignore the variation
among the same size tensors stored at different spatial positions of
memory. Thus, They can not fully extract the memory reduction
opportunity. In this work, MegTaiChi proposes a dynamic tensor
evicting which leverages the variation among tensors at different
memory locations to reduce the memory fragmentation. Further,
a tensor memory allocation is designed to achieve the fine-grained
memory management for each tensor.

7 CONCLUSION
This work proposes MegTaiChi, a dynamic tensor-based memory
management optimization module for the DNN training, which
achieves an efficient coordination of tensor partition and tensor
rematerialization. Specifically, DTP, DTE and TMA are designed for
the heuristic, adaptive and fine-grained memory management. The
experimental results confirm the high performance of MegTaiChi.
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