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ABSTRACT
Booming data volume has become an important challenge for data 
center storage and bandwidth resources. Consequently, fast and 
efficient compression architecture is becoming the most fundamen-
tal design in data centers. However, the compression ratio (CR) 
and compression throughput are often difficult to achieve at the 
same time on existing computing platforms. DEFLATE is a widely 
used compression format in data centers, which is an ideal case 
for hardware acceleration. Unfortunately, Deflate has an inherent 
connection among its special memory access pattern, which limits 
a higher throughput.

In this paper, we propose MetaZip, a high-throughput and scal-
able data-compression architecture, which is targeted for FPGA-
enabled data centers. To improve the compression throughput 
within the constraints of FPGA resources, we propose an adaptive 
parallel-width pipeline, which can be fed 64bytes per cycle. To bal-
ance the compression quality, we propose a series of sub-modules 
(e.g. 8-bytes MetaHistory, Seed Bypass, Serialization Predictor). Ex-
perimental results show that MetaZip achieves the throughput of 
15.6GB/s with a single engine, which is 234×/2.78× than a CPU 
gzip baseline and FPGA based architecture, respectively.
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1 INTRODUCTION
Data growth has become a key challenge for data centers, which 
require significant overhead in order to compute, store and trans-
mit huge amounts of data. Taking genome data as an example, 
it is predicted that by 2025, 1 billion people will have their own 
genomes, generating up to 40 exabytes a year of genomics data [8]. 
Thus, data compression has become a urgent need to storage and 
memory cost savings. However, the overhead of existing data com-
pression technologies is enormous. For example, in the analysis 
measured on more than 20,000 Google machines over a three-year
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period [10], compression took up more than one-quarter of all tax
cycles. The computational burden motivates the acceleration of
data compression applications in today’s data centers.

Deflate is widely used in highly interconnected enterprise and
cloud environments for lossless compression and is utilized in many
data compression tools such as GZIP [6], ZLIB. Therefore, Deflate
represents a realistic option for acceleration. In the past, software
optimizations [9] provide speedup for Deflate by sacrificing com-
pression ratio. Nevertheless, the throughput on existing CPU sys-
tem is only about a hundred megabytes per second. In response
to the shortcomings of software approaches, some hardware ap-
proaches, such as FPGA [3, 7, 11, 13], ASIC [2], were proposed. The
industry-leading NXU accelerator [2] claimed 68 PCIe based com-
pression cards with 4GB/s peak throughput are needed to match its
performance on the largest z15 system topology with 20 processor
chips. However, the hard-coded ASIC implementation is not being
able to meet new compression algorithms. Due to the growing de-
ployment of FPGAs in cloud data centers [12] and the flexibility of
FPGAs, accelerating compression using FPGA is becoming a prac-
tical solution. However, previous studies used resource-intensive
designs, which limited both the scalability and throughput.

In this paper, we propose MetaZip, which is targeted at FPGA-
enabled data centers. In contrast to previous studies, each engine
in MetaZip is designed to process 64 bytes/clock cycle @250MHz.
To fully take advantage of FPGA resources, we propose the seed-
extension scheme in MetaZip. MetaZip introduces several novel
designs that maintain compression ratio while significantly im-
proving throughput: 1) Seed Bypass balances the problem that the
output of the hashSeeding phase is much larger than that of the
extension phase, 2) 8 bytes metaHishtory effectively provides in-
formation for port resource allocation, which significantly reduce
unnecessary memory access, 3) the ArbiterTree enables MetaZip
to have adaptive throughput in the face of dynamically changing
inputs in the real system. In addition, MetaZip contains a serial-
ization predictor to avoid modifying the data flushed out, which
is faithful to Deflate specification. The main contributions of this
paper are:

• We propose MetaZip, a high-throughput and scalable com-
pression architecture for Deflate. MetaZip is designed with
the philosophy of maximizing throughput. We designed an
adaptive parallel-width pipeline to overcome the bottleneck
of static architecture.

• We propose series of sub-module, such as 8 bytes metaHis-
tory, Seed Bypass mechanism, and serialization predictor to
improve compression ratio at high throughput.

• Experimental results show that MetaZip achieves 15.6GB/s
throughput with a single engine. By deploying MetaZip on a
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machine with only 8 U280 accelerator cards, the system can
provide 374.4GB/s throughput, which is 1.33× better than
the industry-leading NXU system.

2 BACKGROUND AND MOTIVATION
2.1 Deflate Overview
Deflate is a widely used lossless compression data format defined
in RFC1951 [5]. Although not clearly defined, the Deflate algorithm
generally refers to a lossless compression algorithm that generates
the specified format.

Input Bytes Stream

LZ77 Literal/Match

Output Bits Stream

A A T C A C G A T C A C T C A A C G A T C...

A A T C A C G

110011000100100...
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Huffman Encode

LZ77 Encode LZ77 Encode

Figure 1: Deflate compression process.

The typical Deflate algorithm implementation consists of LZ77
encoding and Huffman encoding, as shown in Fig. 1. The LZ77
encoding phase uses the Lempel-Ziv compression algorithm [14]
variants to convert the input byte stream into a series of literals
or matches. A literal is identical to the input byte. A match is a
< 𝐷𝑖𝑠𝑡, 𝐿𝑒𝑛 > pair that indicates current input repeats 𝐿𝑒𝑛 bytes
with input 𝐷𝑖𝑠𝑡 bytes ago. In gzip, LZ77 encoding is implemented
with a hash table and a 32KB sliding window. The hash value of
the first 3 bytes input is taken to index the hash table and find the
history addresses in the sliding window where a duplicated string
might exist.

After that, all literals and matches are encoded again using the
Huffman algorithm. Deflate supports fixed or dynamic Huffman
codes. In the fixed mode, predetermined Huffman codes are embed-
ded into the compressor to eliminate the overhead of building the
Huffman tree and achieve higher speed.

To improve throughput, deflate algorithms can be parallelized in
two dimensions: block-wise and byte-wise. The input file is split into
blocks, and the blocks are assigned to multiple standalone threads
in block-wise parallel mode. On the other side, the compressor is
extended to accept 𝑃 parallel bytes. The two parallel dimensions
are orthogonal and can be combined to achieve higher throughput.
However, it is essential to note that block-wise parallelism violates
deflate streaming input and output requirements to some extent,
so the scope of application will be narrowed.

2.2 Motivation and Challenges
According to our observations, the bottleneck of gzip performance
is caused by frequent and fragmented data access. We profiled
gzip using Intel VTune, and Table 1 lists the functions and CPU
time proportions that account for the majority of execution time. In
function ’longest_match’, which takes up 65.7% execution time, gzip
performs hash table lookups and byte-wise string prefix matching
operations. Heterogeneous architectures with memory structure
optimization are potential paths to speed up the deflate algorithm.

Table 1: Execution time breakdown of Gzip.

Function CPU Time % Description
longest_match 65.7% LZ77 Encode
fill_window 9.9% File read
flush_block 7.6% Huffman Encode & file write
ct_tally 3.3% Huffman Encode

Previous works have proposed some designs but are not efficient
enough. [7] proposed a multi-banking hash table that operates at
a double clock rate of the rest parts, which can take 𝑃 bytes input
and produce 𝑃 history address candidates each cycle. However,
after the well-designed hash table, 𝑃 memory banks of 𝑃-bytes data
width are needed to perform the match, which means the number
of required BRAM is𝑂 (𝑃2). Although the number of BRAM blocks
in FPGA is increasing, our practice shows that the poorly-organized
history memory will incur routing congestion and eventually lead
to difficulty in timing convergence when 𝑃 ≥ 32. In addition, when
the hash table depth 𝐻𝑇𝐷 > 1, the hash table produces more
candidate history addresses. Based on our experiments, arbitrary
discarding candidate history address results in a lower compression
rate.

Another approach to overcome the memory access challenge
is the NearCAM based on comparator array and shift registers
introduced by [2]. The NearCAM completely discarded the hash
table and the history memory. It achieved efficient data reuse by
redundant operation components. Nonetheless, NearCAM does
not perform well in scalability. On the one hand, the number of
comparators required by NearCAM is 𝑂 (𝑃 · SlidingWindowSize),
and many of the comparator results are useless due to the lack of
hash table guidance. On the other hand, the critical path length
of NearCAM is 𝑂 (𝑃), and it is not easy to be pipelined. These
characteristics limit the scale of NearCAM and harm throughput
and compress ratio. In fact, in previous work [2], along with the
novel NearCAM, a traditional FarCAM which implemented with
hash table and history memory likes [7] is also included.

3 METAZIP ACCELERATOR
3.1 Overview
The architecture of MetaZip is shown in Fig. 2(a). We hope to
achieve higher throughput by expanding the parallel width of
MetaZip. Since the increase in parallel width causes a dramatic
increase in resource overhead for a single memory component,
simply stacking more logic resources does not improve throughput
effectively. To maximize the throughput, we designed the hash table
with MetaHistory and Seed Bypass mechanism to reduce the con-
tention for history memory.We also proposed Serialization Predictor
and novel interconnection structure with ArbiterTree to maintain
compression ratio at high throughput.

MetaZip is a non-blocking pipeline with 4 main phases. MetaZip
can accept 𝑃 bytes input per cycle. The input data firstly come to
the 1 HashSeeding phase for hash table lookup and update. The
hashSeeding phase produces seeds corresponding to input. Unlike
software and previous works, a seed contains not only a possible
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Figure 2: The architecture of MetaZip. (a) The architecture and the dataflow with in 4 phases. P input bytes are converted to
seeds, matchs, and finally bit stream. (b) The architecture of the hashSeeding element and the hash table with metaHistory. (c)
Circuit of the arbiterTree. (d) Dataflow in the serialization predictor.

history address, but also a locally matched length that we call
metaLength. The number of seeds generated by the hashSeeding
phase depends on the number of the hashSeeding elements(𝐻𝑇𝑃 )
and the depth of the hash table(𝐻𝑇𝐷). In a typical configuration,
the hashSeeding phase can generate up to 256 seeds each cycle.

Next, seeds enter the 2 HistoryExtension phase, in which they
will guide history memories to pick up history string and match
with current input. Duplicate history memories play the role of the
sliding window in the LZ77 encoding and their ports need to be
wide enough to accept 𝑃 bytes input without loss. Such a wide data
width can lead to inefficient use of memory resources in FPGA, so
the number of history memory is minimal and less than the number
of input seeds. An arbiter tree is employed before history memory
banks to pick out seeds that may result in longer matching lengths.

After the historyExtension phase, the seeds have been extended
into matches with full lengths. However, since matching results
are generated in parallel, there may be overlaps between matches,
which is not allowed by DEFLATE. 3 Serialization phase elim-
inates repeats among matches. Finally, the serialized result will
be sent to the 4 Huffman Encode phase and be packed into the
output bit stream.

3.2 HashSeeding Element with MetaHistory
The hashSeeding phase is formed by 𝐻𝑇𝑃 hashseeding elements
shown as Fig. 2(b). The whole hash table is an SRAM scratchpad

addressed according to the hash value, partitioned horizontally and
evenly into all hashSeeding elements. Each hashSeeding element
receives all input hash values, and an arbiterTree picks up one that
falls within the current address interval. The data organization of
hash table is shown in Fig. 2(b). Rows of the hash table contain𝐻𝑇𝐷
hash items and are read out entirely and updated like a shift register.
A hash item includes not only a history address where a match
might occur but also a short history segment called MetaHistory.

Putting additional metadata into hash items is an effective way
to improve compression performance. The most intuitive reason is
that it gives one access to the hash table to fetch more information
and merges several potential memory access into one. Previous
work [4] and open source Vitis compression library [1] used this
schemes to increase compression ratio. Furthermore, we found that
additional metadata can play a more significant role in designing
a high throughput DEFLATE accelerator since higher throughput
increases the conflict between memory port requirements and the
FPGA routing resource. So we add 8 bytes metaHistory for each
hash item radically.

After hash table lookup, seedGenerator calculate metaLength for
each seed according to metaHistory and current input. MetaLength
is precisely the match length if there is a match of current input
at the history address. Obviously, if the seed’s metaLength is not
longer than the metaHistory’s length, MetaZip no longer needs to
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allocate an memory port for the seed. This strategy can significantly
reduce unnecessary memory access.

The memory banks in hashSeeding elements are implemented
with LUTRAM rather than block RAM for following two reasons:

• Resource utilization: As the hash table is split horizon-
tally, and when 𝐻𝑇𝑃 is large, there are fewer rows in each
hashSeeding element. Utilizing block RAM in this situation
is wasteful, but LUTRAM is appropriate.

• Timing burden: Data read from the hash table need to be
written back to the same address in the same cycle. Using
LUTRAM can reduce the timing burden because no optional
output register could be merged into the RAM block.

Finally, the complete hashSeeding phase can generate up to 256
seeds per cycle, providing 500 GB/s of memory bandwidth at a clock
frequency of 250 MHz.

3.3 Seed Bypass
The hashSeeding phase produces far more seeds than the histo-
ryExtension phase can handle. According to the strategy in Section
3.2, only seeds with long enough metaLength can occupy mem-
ory ports in the historyExtension phase. To take full advantage of
metaHistory, rather than drop too many seeds directly, we designed
a seed bypass along with the historyExtension phase.

At the end of the hashSeeding phase, for each hashSeeding ele-
ment, the seed with max metaLength is picked. Selected seeds are
sent into seed bypass and forward to the end of the historyExtension
phase and merge with match result produced by the historyExten-
sion phase. If the metaLength of a seed is longer than the minimal
match length allowed by DEFLATE (typically 3), the seed can be
treated as a match result.

Seed bypass can increase compression from two perspectives:
• If a hashSeeding elements does not produce any seed long
enough to participate in the extension, its result also has the
chance to become the final match.

• If the hashSeeding phase produces too many seeds long
enough for the historyExtension to handle them all, a nice
enough seed can also be the final result.

4 OPTIMIZATION
4.1 Serialization Predictor
The DEFLATE algorithm requires the output to be serialized, mean-
ing that the literal / match encoding positions for each output are
continuous and do not overlap. This requirement ensures that the
DEFLATE decompressor can be streamed without modifying the
data flushed out. The serialization phase takes charge of eliminat-
ing overlap between the results of the historyExtension phase. As
the length of match might span parallel windows, there are de-
pendencies between parallel windows. However, when 𝑃 is large,
serialization of a single window cannot be completed in one cycle.
This will lead to pipeline blocking and throughput reduction. There-
fore, we designed a serialization predictor as shown in Fig. 2(d) to
eliminate the impact of dependencies between parallel windows.

The Serialization Predictor consists of multiple stages. It takes
match lengths(length=1, if literal) from the historyExtension phase
as input. At the first stage, each length is added with index in

parallel window and turned into nextEncodePos which indicates the
subsequent position after current match. NextEncodePos is allowed
to stride across parallel windows. Then, 𝑃 stages are applied to
calculate the suffix max nextEncodePos for each input and the
index of the max value is also propagated forward. The output of
the serialization predictor is serial of < 𝑖𝑑𝑥, 𝑛𝑒𝑥𝑡𝐸𝑛𝑐𝑜𝑑𝑒𝑃𝑜𝑠 > pairs.

The serialize phase has a Global Next Encode Position (GNEP)
register and a MUX selects Serialization Predictor Result (SPR) from
the output of the serialization predictor according to GNEP. The se-
lection of SPR can be completed in 1 cycle. In subsequent encoding,
the next GNEP value will be SPR.nextEncodePos, provided that the
corresponding match for SPR.idx is not overwritten.

Compared to trimming match length into single parallel window,
the serialization predictor can make full use of previous phase
results to improve the compression ratio without compromising
the throughput.

4.2 ArbiterTree and Adaptive Throughput
In MetaZip, data arbitration is required in many places, e.g. the
hashSeeding elements selects 1 hash value from 𝑃 inputs, the histo-
ryExtension phase selects 𝐻𝑀𝑃s from many seeds for extension
and the shuffled match need to be reordered before the serialization
phase. Due to the wide data width, the priority encoder and MUX
using pure combinational logic consume many LUT resources and
have a poor timing performance. So, we use ArbiterTree shown as
Fig 2(c) to settle down data arbitration issues.

The arbiterTree is organized as a binary tree. Each node in the ar-
biterTree has a valid bit and a data payload field. Assuming that the
two children of a node 𝑃 are 𝐿 and 𝑅, then 𝑃 .𝑣𝑎𝑙𝑖𝑑 = 𝐿.𝑣𝑎𝑙𝑖𝑑 |𝑅.𝑣𝑎𝑙𝑖𝑑
and payload of 𝑃 can be selected by a 2-to-1 MUX. ArbiterTree’s
layered structure makes it easy to be pipelined.

The ArbiterTree enables MetaZip to have adaptive throughput.
MetaZip is designed as a non-blocking pipeline with stable through-
put. However, when MetaZip is integrated into a system, the exter-
nal bandwidth may be dynamic. When the speed of input or output
cannot satisfy the full throughput of the pipeline, we can reduce
parallel width by marking some input bytes as invalid. Since the
arbiterTree decouples the data width between different phases, a
narrow input can still fill up the data lane and result in a higher com-
pression ratio with less conflict on memory ports. This adaptability
is on-the-fly and does not require reconfiguration of FPGA.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
To evaluate the throughput and compression ratio of MetaZip, we
have fully implemented the hashSeeding phase, historyExtension
phase, and serialization phase with Chisel. The key design param-
eters are listed in Table 2. We choose fixed Huffman encoding in
MetaZip since it is friendly to FPGA.

We synthesized and implemented MetaZip in Xilinx Vivado
v2020.1 and the target board is Xilinx Alveo U280 Data Center
Accelerator Card. We were able to close the timing of MetaZip at
250MHz. We built an emulator with chiseltest and Verilator, which
can produce traces of the serialization phase output. The output
of the MetaZip emulator is piped into a static Huffman encoder
that can generate files in standard DEFLATE format. We use Silesia
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Table 2: Parameters configuration of MetaZip.

Parameter Value
Max Parallel Width (P) 64 bytes
Hash Value Width 12 bits
Hash Table Depth (HTD) 8
MetaHistory Length 8 bytes
# of HashSeeding Elements (HTP) 32
# of History Memory (HMP) 8
Max Match Length 64 bytes

Table 3: Throughput and compression ratio comparisons.

Compression RatioDesign Throughput Silesia Canter. Cal.
MetaZip(P=64) 15.6GB/s@250MHz 1.68 1.65 1.60
MetaZip(P=32) 7.8GB/s@250MHz 2.06 1.94 1.89
MetaZip(P=16) 3.9GB/s@250MHz 2.34 2.36 2.08
MetaZip(P=8) 1.9GB/s@250MHz 2.49 2.50 2.14
Gzip-fastest 68MB/s 2.74 3.24 2.63
Microsoft [7] 5.6GB/s@175MHz 1.90 2.56 2.09
IBM NXU [2] 19.5GB/s@2.5GHz 2.38 2.89 2.68
Vitis [1] 300MB/s@300MHz 2.70 - -

corpus, Canterbury corpus and Calgary corpus as the benchmark
for the compression ratio evaluation.

5.2 Analysis of Experimental Results
The evaluation results of MetaZip is listed in Table 3. The result
of gzip is measured on a machine with a 2.10GHz Intel Xeon CPU
E5-2620 v4 CPU and 128GB RAM. The results of related works are
extracted from [7][2][1].

Throughput. Because MetaZip is a non-blocking pipeline that
can handle 64 bytes of input per cycle at a clock frequency of
250MHz, the maximum throughput of single engine is 15.6 GB/s. If
external blocking is taken into account, the adaptive throughput
can vary from 1.9GB/s to 15.6GB/s.

The throughput of MetaZip is 234× higher than single thread
gzip. Maximum throughput improves by 2.78× compared to [7], the
design took high throughput as the same target and implemented
on FPGA. The Vitis compression library is designed in block-wise
parallel mode, so single-engine throughput is limited, typically with
8 engines in a kernel for 2.9 GB/s throughput and 5.3× slower than
MetaZip. Since the parallel modes are orthogonal, one possible
solution is to replace the engine of Vitis compression library with
MetaZip for higher throughput.

The high single-engine throughput of [2] benefits from the
2.5GHz ASIC implementation, although the parallel width is only 8
bytes. [2] achieved 280GB/s throughput in the largest z15 system
by deploying 20 processor chips with NXU. Based on the resource
utilization, at least 3 MetaZip accelerators can be implemented on a
single Alveo U280 card. MetaZip can provide 374.4GB/s throughput

Table 4: Configurations of optimization mechanism.

# MetaHistory Seed Bypass Serialization Predictor
1 0B × ✓
2 3B ✓ ✓
3 8B × ✓
4 8B ✓ ×

default 8B ✓ ✓

by leveraging 8 U280 cards. However, installing 8 dual-width PCIe
accelerator cards in a 4U chassis is much easier than 20 processors.

Compression ratio. Figure 3 depicts the relationship between
MetaZip compression ratio and Parallel width, with a significant
negative correlation between them. This is because memory ports
are more stressed as parallel width increases. Thanks to the features
of adaptive throughput, if a higher compression ratio is required for
a particular scenario, we can increase compression ratio by actively
limiting throughput.

4 8 16 32 64 128
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Figure 3: Effect of parallel width on compression ratio.

Due to dynamic Huffman encoding, previous works [1, 2] achieve
higher compression ratio than MetaZip, however the cost is much
higher implementation complexity and latency. Additional experi-
ments show that MetaZip can provide a compression ratio of 2.948
on silesia corpus when using dynamic Huffman encoding with a 8
bytes parallel window. Gzip also uses static Huffman coding, but
the compression ratio is high because there is no memory port
contention in the single thread software implementation.

5.3 Performance of Optimization Mechanism
The metahistory, seed bypass and serialization predictor mecha-
nisms are designed to increase compression ratio while providing
high throughput. This section evaluates the effect of these mecha-
nisms on compression ratio by 4 different configurations listed in
Table 4. The compression ratio of Silesia corpus on four experimen-
tal configurations and default is shown in Figure 4.

MetaHistory. A comparison of configurations 1, 2, and default
reveals the role of MetaHistory in improving compression ratio.
Using no metahistory or only 3 bytes MetaHistory will downgrade
average compression ratio 32.3% and 26.4%. Note that using 3 bytes
history improves compression ratio by only 8.5% compared to no
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Table 5: Power consumption breakdown of MetaZip.

Dynamic/W % Static/W %
Total = 15.464W (100%) 12.066 78.0 3.398 22.0
HashSeeding 5.907 38.2 - -
HistoryExtension 5.790 37.4 - -
Serialization 0.369 2.40 - -

metaHistory, and when metaHistory extends to 8 bytes, the com-
pression ratio increases by 47.6%. The reason for this result is that
longer MetaHistory can better filter invalid seeds caused by hash
conflicts and produce seeds with longer metaLength.

Seed Bypass. An experimental comparison of the default con-
figuration and configuration 1 shows that seed bypass can increase
the average compression ratio by 20% when using the same 8 bytes
metahistory. It is worth noting that test cases such as xml are more
sensitive(increased 32.0%) to the seed bypass mechanism because
their matching lengths are more distributed within 8 and more
seeds can be converted through seed bypass.

Serialization Predictor. In Experiment 4, serialize predictor
was disabled. To produce the right results, we serialize using a naive
approach, which is to trim match length to ensure that it does not
cross parallel windows. The results show that the naive method
can reduce the average compression ratio by 5.66%.

5.4 Power and area breakdown
The power and area of MetaZip are estimated by Vivado and listed
in Table 5 and Table 6. MetaZip requires about twice as much
area as [7]. With a 2.78x increase in throughput, the area did not
grow scale quadratically as [7] predicted, which means MetaZip
has better scalability in area. Thanks to the low power feature of
FPGA, the total power of MetaZip is 15.5W, only 55.7% of 28W
NXU in [2]. And the energy/GB of MetaZip is 0.98J/GB, 4.28x lower
than NXU. MetaZip has advantages over ASIC in terms of energy
consumption.

Table 6: Resource utilization results of MetaZip.

Avail. HashS. HistoryE. Serial. Total
LUT 1303K 110K 118K 16K 244K

100% 8.47% 9.05% 6.36% 18.7%
LUTRAM 600K 49K 2K 12K 64K

100% 8.23% 0.475% 2.00% 10.7%
FF 2607K 54K 133K 8K 196K

100% 2.07% 5.13% 0.326% 7.53%
BRAM 2016 0 128 0 128

100% 0 6.35% 0 6.35%

6 CONCLUSION
In this work, we propose a FPGA-based accelerator for Deflate,
which adopts 8 bytes metaHistory, seed bypass, serialization pre-
dictor mechanisms to provide high throughput. Experimental re-
sults show that MetaZip with single engine can provide 15.6GB/s
throughput, which is 234×/2.78× than a CPU gzip baseline and
FPGA based architecture. By leveraging the adaptive throughput
design, the compression ratio of MetaZip can be ranging from 1.68
to 2.49 according to the dynamic workloads in the real system.
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