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Abstract
Convolution is the most time-consuming part in the compu-
tation of convolutional neural networks (CNNs), which have
achieved great successes in numerous practical applications.
Due to the complex data dependency and the increase in the
amount of model samples, the convolution suffers from high
overhead on data movement (i.e., memory access). This work
provides comprehensive analysis and methodologies to min-
imize the communication for the convolution in CNNs. With
an in-depth analysis of the recent I/O complexity theory un-
der the red-blue game model, we develop a general I/O lower
bound theory for a composite algorithm which consists of
several different sub-computations. Based on the proposed
theory, we establish the data movement lower bound results
for twomain convolution algorithms in CNNs, namely the di-
rect convolution and Winograd algorithm, which represents
the direct and indirect implementations of a convolution
respectively. Next, derived from I/O lower bound results, we
design the near I/O-optimal dataflow strategies for the two
main convolution algorithms by fully exploiting the data
reuse. Furthermore, in order to push the envelope of perfor-
mance of the near I/O-optimal dataflow strategies further, an
aggressive design of auto-tuning based on I/O lower bounds,
is proposed to search an optimal parameter configuration for
the direct convolution andWinograd algorithm onGPU, such
as the number of threads and the size of shared memory used
in each thread block. Finally, experiment evaluation results
on the direct convolution andWinograd algorithm show that
our dataflow strategies with the auto-tuning approach can
achieve about 3.32× performance speedup on average over
cuDNN. In addition, compared with TVM, which represents
the state-of-the-art technique for auto-tuning, not only our
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auto-tuning method based on I/O lower bounds can find the
optimal parameter configuration faster, but also our solution
has higher performance than the optimal solution provided
by TVM.

CCS Concepts: • Theory of computation→ Communi-
cation complexity; •Computingmethodologies→Par-
allel algorithms.

Keywords: I/O lower bounds, red-blue pebble game, dataflow
design, auto-tuning, convolutional neural network.

1 Introduction
Convolutional neural networks (CNNs) are commonly ap-
plied to numerous computer vision and machine learning
applications, which have achieved great successes because
the complex layer structures could produce high-quality
results based on a large number of data. Specifically, the
convolution layer is an important structure in many state-of-
the-art modern CNNmodels, such as MobileNet [14], ResNet
[28], ShuffleNet [33], SqueezeNet [15], VggNet[26] and so
on. The wide adoption of convolution and its huge cost have
led to a high demand to optimize convolution operations
for high performance. From the hardware perspective, GPUs
have been demonstrated to be able to provide tremendous
computation power for accelerating convolution operations.
Furthermore, many specific accelerators for convolutions in
CNNs are designed based on field-programmable gate arrays
(FPGA) and application-specific integrated circuits (ASIC).
From the software perspective, a variety of optimization
techniques have been developed from algorithm level [8] to
compilation level [34]. Many optimization efforts have also
been incorporated into the widely used software libraries,
such as NVIDIA cuDNN [9] and AMD MIOpen [19].
For convolution operations in CNNs, multiple convolu-

tion algorithms have been developed and classified into two
categories: direct and indirect approaches. Typical direct and
indirect representatives are the direct convolution andWino-
grad convolution algorithms respectively, each of which in-
volves a large amount ofmemory accesses due to the complex
computational workflow and massive data in convolution
operations. For example, all inputs and weights are typically
stored in the off-chip memory of CNN accelerators, such as
global memory in GPUs. During computation, partial inputs
and weights are loaded from the off-chip memory into the
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on-chip buffer to produce portions of outputs. Meanwhile,
each processor could use its own registers to read some in-
puts and weights which have been in the on-chip buffer.
Consequently, the frequent data movement in the memory
hierarchy commonly dominates the energy consumption of
convolution operations [6]. Therefore, optimizing the data
transmission of convolutions is the key to improve the per-
formance of convolutions.

Tominimize data movement, the most works focus on how
to reduce the model size, such as quantifying weights [35].
On the other hand, another effective way for reducing com-
munication is to increase data reuse based on the dataflow
design. In recent years, a variety of dataflow approaches
have been proposed [7, 18, 24], most of which mainly focus
on the computation efficiency. However, the data movement
of convolutions has not been taken a full account. This work
would try to consider the communication-optimal strategies
for different convolution algorithms based on the I/O lower
bound analysis.

Since I/O lower bound analysis is important for evaluating
the optimality of a proposed algorithmic solution, it is widely
concerned to establish appropriate lower bounds of the data
movement of application codes [29, 30]. Under the red-blue
pebble game model [17] for data transmission in memory
hierarchy, past work on I/O lower bounds has found bounds
for specific algorithms, such as matrix-matrix multiplication
and FFT. As the recent methodology mainly focuses on the
workflow’s specific properties which do not translate across
different computational patterns, the recent lower bound
theory seems hard to be applied to arbitrary computations
such as convolutions, in which different sub-computations
involve different computational patterns. How to establish a
systematic I/O lower bound theory for convolutions based
on the red-blue pebble game model is a big challenge [31].
Even if the lower bounds could be obtained, the theoretical
minimum of I/O complexity is not easy to directly yield an
efficient dataflow strategy. There is a very large space to
explore. How to determine the dataflow with the help of I/O
lower bound is another challenge.
To solve the above challenges, this work considers to

quantify the contribution of each sub-computation to the
total computation, and then generalizes the recent I/O lower
bound theory to establish I/O lower bound results for convo-
lutions under the red-blue pebble game model. Next, through
a deeper investigation of the highest order term in the lower
bound results, we determine which data reuse should be
fully exploited, and propose the near I/O-optimal dataflow
strategy for maximizing such data reuse to minimize the
memory access in convolutions. Furthermore, by comparing
the lower bound result with I/O cost of our dataflow strategy,
the optimality condition for implementation of convolutions
is deduced. Based on the optimality condition, a fine-grained
auto-tuning optimization is designed to find the optimal
implementation with high performance effectively.

In this work, we make the following key contributions.
• Develop a general I/O lower bound theory under the
red-blue pebble game model for any composite algo-
rithm which involves different sub-computations and
different computational patterns.

• Establish I/O lower bound results for two typical rep-
resentatives of direct and indirect convolution algo-
rithms, which are the direct convolution andWinograd
convolution algorithms.

• Design near I/O-optimal dataflow strategies respec-
tively for the direct convolution and Winograd convo-
lution algorithms.

• Propose an auto-tuning engine to achieve excellent
implementations of our dataflow strategies.

2 Background
2.1 Red-blue Pebble Game
The red-blue pebble game is a two-level memory access
model which is proposed by Hong & Kung [17]. The game is
played on a directed acyclic graph (DAG), which describes
the operation of the algorithm. Let 𝐺 (𝑉 , 𝐸) be a DAG. 𝑉 is
the vertex set representing operations of algorithm, and 𝐸 is
the edge set representing the dependency of two operations.
A partition on𝐺 is called an S-partition if the following four
properties hold.

• Property 1:𝑉 is partitioned intoℎ subsets𝑉1,𝑉2, · · · ,𝑉ℎ
such that 𝑉𝑖 ’s are disjoint but their union is 𝑉 .

• Property 2: There is a dominator set𝐷𝑖 for each𝑉𝑖 that
contains at most 𝑆 vertices. A dominator set 𝐷𝑖 for 𝑉𝑖
is a set of nodes in𝑉 such that any path from an input
of 𝐺 to a node in 𝑉𝑖 contains some nodes in 𝐷𝑖 .

• Property 3: There is a minimum set𝑀𝑖 for each𝑉𝑖 that
contains at most 𝑆 vertices. The minimum set of 𝑉𝑖 is
defined to be the set of vertices in 𝑉𝑖 that do not have
any successor vertex belonging to 𝑉𝑖 .

• Property 4: No cyclic dependence is among 𝑉1, · · · ,𝑉ℎ .
Let 𝑃 (𝑆) be the minimum number of subsets that any

S-partition of a DAG must have. The following theorem
describes the communication lower bound based on the S-
partition model (the proof is provided in [17]).

Theorem 2.1. Any complete calculation of a red-blue pebble
game on DAG𝐺 = (𝑉 , 𝐸) with at most 𝑆 red pebbles needs the
minimum I/O time 𝑄 such that

𝑄 ≥ 𝑆 · (𝑃 (2𝑆) − 1). (1)

2.2 Direct Convolution
Figure 1 illustrates a direct convolution. We have an input
image of size𝑊𝑖𝑛 × 𝐻𝑖𝑛 × 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 kernels of weights,
producing a𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡 ×𝐶𝑜𝑢𝑡 output image. For the con-
volution, the channels of input image 𝐶𝑖𝑛 are the number of
channels in each kernel, and the channels of output image
𝐶𝑜𝑢𝑡 are equal to the number of kernels, and each channel
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Figure 1. Direct Convolution.

of output image is a 𝐻𝑜𝑢𝑡 ×𝑊𝑜𝑢𝑡 matrix. The kernel is a
𝑊𝑘𝑒𝑟 × 𝐻𝑘𝑒𝑟 × 𝐶𝑖𝑛 tensor. Each output is computed by an
inner product between a kernel tensor and a sliding input
tensor with the size of𝑊𝑘𝑒𝑟 ×𝐻𝑘𝑒𝑟 ×𝐶𝑖𝑛 from an input image
by using a sliding window. The stride size 𝜇 is the position
difference between two adjacent sliding windows.

2.3 Winograd Algorithm
Winograd algorithm for convolution is shown in Figure 2.
This algorithm changes the characteristics of time-domain
convolution calculations, and reduces the number of multipli-
cation operations between input images and kernels through
mathematical transformation. In order to perform the mathe-
matical transformation, several parameter matrices are intro-
duced. Matrix 𝐴, 𝐵 and 𝐿 are three transformation matrices
for output images, input images and kernels respectively.
Furthermore, as Winograd algorithm requires𝑊𝑘𝑒𝑟 = 𝐻𝑘𝑒𝑟 ,
we denote 𝑟 as𝑊𝑘𝑒𝑟 or 𝐻𝑘𝑒𝑟 briefly. Winograd algorithm can
calculate multiple output results at once. Here, we denote
𝐹 (𝑒 × 𝑒, 𝑟 × 𝑟 ) as a calculation process to deduce 𝑒2 outputs
in Winograd algorithm. Theoretically, the value of 𝑒 is ar-
bitrary, but in practice 𝑒 usually is chosen as 2, 3 or 4. To
compute every 𝑒2 outputs at a fixed channel of an output
image, 𝐹 (𝑒 × 𝑒, 𝑟 × 𝑟 ) requires a sliding input tensor with
the size of (𝑒 + 𝑟 − 1) × (𝑒 + 𝑟 − 1) ×𝐶𝑖𝑛 from input images
using a sliding window and a kernel tensor with the size
of 𝑒 × 𝑒 × 𝐶𝑖𝑛 . Then the input tensor and kernel are trans-
formed by 𝐵 and 𝐿 into 𝑃 and 𝐽 which have the same size of
(𝑒 +𝑟 −1) × (𝑒 +𝑟 −1) ×𝐶𝑖𝑛 . Next, the corresponding element
product of 𝑃 and 𝐽 results in a new (𝑒+𝑟 −1)× (𝑒+𝑟 −1)×𝐶𝑖𝑛

tensor 𝛬, and the summation of elements in 𝛬 along channel
direction generates the (𝑒 + 𝑟 − 1) × (𝑒 + 𝑟 − 1) matrix 𝛱 .
Finally, 𝛱 is transformed by 𝐴 into some 𝑒 × 𝑒 matrix which
are 𝑒2 outputs.

3 Challenges
In this section, we elaborate specific challenges that need to
be addressed in order to build I/O lower bound theory and
design I/O-optimal dataflow strategies, and present our basic
idea to address these challenges.

e+r-1

e

e+r-1

e
+

r-1

e+r-1

e
+

r-1

e
+

r-1

r

r

e+r-1

e
+

r-1 e+r-1

e
+

r-1

e+r-1

e
+

r-1

e+r-1

* 
L

B

L×

×

B

∑c

Π

A

×

·

×

×

`

·

Output Image
Kernel

Input Image

P

J

Λ

e

Figure 2.Winograd Algorithm.
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3.1 Challenges for Building I/O Lower Bounds
In real application, most numerical algorithms, such as con-
volutions, are typically constructed from a number of sub-
computations. For instance, Figure 3 shows that Winograd
algorithm has 4 sub-computations, which involve 4 different
patterns: (1) matrix-matrix multiplication, (2) element-wise
multiplication, (3) element-wise addition, (4) matrix-matrix
multiplication. Although the red-blue pebble game model
has been proposed for many years, it is still difficult to use
this model to establish I/O lower bounds of composite al-
gorithms which involve several different kinds of compu-
tational patterns [13]. It is not even possible to deduce a
suitable I/O lower bound of the DAG only focusing on each
sub-computation of the composite algorithms, due to the
following two main reasons. Firstly, at the beginning of the
red-blue pebble game, all DAG vertices without predecessors
have blue pebbles, and all vertices without successors would
get blue pebbles at the end of the game. Based on this assump-
tion, the calculation for each sub-DAG will require at least
one load operation for each input and one store operation
for each output. However, when the red-blue pebble game is
played on the full DAG, the data could pass from a previous
sub-computation to a later one directly through fast memory.
Secondly, when a composite computation is assigned into
several sub-computations, the total DAG is partitioned into
several relevant sub-graphs. Under a common constraint that
previous sub-computation must be totally finished before the
later sub-computation starts, the partition way of the total
DAG usually impacts the data movement complexity due
to the limited size of fast memory. The two reasons above
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describe the essential difficulties to develop the general I/O
lower bound theory for any composite algorithm. To get
around these difficulties, the red-blue-white pebble game
model has been proposed recently to analyze composite al-
gorithms, which uses some restrictions on models, such as
the limitation of disallowing re-computation of values on
vertices of DAG [13]. However, the convolution algorithms,
such asWinograd algorithm, allow re-computation to reduce
the number of I/O operations.

3.2 Challenges for Optimal Implementations
If I/O lower bounds could be obtained, another challenge is
how to design the optimal implementations for convolutions.
First of all, the theoretical minimum of I/O complexity seems
not to directly yield efficient implementations. Although the
dataflow design of increasing the local data reuse is useful
for reducing the number of I/O operations, the recent lower
bound theory could not tell us which data should be reused
in the on-chip memory prior to the others. Hence, it is neces-
sary to develop a new methodology for using insights from
I/O lower bounds to design I/O-optimal strategies. Next,
even if we know which data has higher reuse priority, it
is also not easy to determine the optimal implementation
for maximizing such data reuse. For the implementation de-
sign of convolutions, the combinatorial choices of memory
access, threading pattern, specific input shape and layout
create a huge configuration space, such as loop tiling, order-
ing, unrolling, and so on. For 4 sub-computations in Wino-
grad algorithm, the size configuration space is usually larger
than 106. This fact indicates that it is hard to manually de-
sign an efficient implementation for a convolution. Although
NVIDIA proposes excellent implementations for different
convolution algorithms in cuDNN library [10], these imple-
mentations mainly focus on general optimization on GPUs.
Directly using the convolution API in cuDNN sometimes can
not satisfy the real-time demand of inference applications.
Recently, auto-tuning methods have been proposed for the
fine-grained optimization of convolutions. The common way
is to adopt a predefined cost model to guide the search, but
building an accurate cost model is difficult due to the increas-
ing complexity of modern hardware. As the state-of-the-art
framework for auto-tuning convolutions, TVM proposes a
new auto-tuning method based on ML-model [5]. However,
it still needs a large search cost due to the huge search space.

3.3 Motivation
In this work, we explore the red-blue pebble game. The anal-
ysis on each sub-computation could not accurately estimate
the data movement complexity, which is because the con-
tribution of each sub-computation to total computation is
ignored. Through the quantification of such contribution,
all sub-computations can be viewed as a whole, which pro-
vides an opportunity to build I/O lower bound of composite
algorithms.

Besides, to addresses the challenges for determining the
optimal implementations, this work combines both coarse-
grained design and fine-grained optimization. In the coarse-
grained design, we develop a methodology of using the
highest order term in I/O lower bounds to determine which
data reuse should be fully exploited, and design I/O-optimal
dataflow strategies for maximizing such data reuse to mini-
mize the memory access in convolutions. By comparing the
I/O volumes of the dataflow strategies with the lower bounds,
we discover the optimality condition for the I/O-optimal de-
sign. In the fine-grained optimization, we use this optimality
condition to reduce the size of search space, and propose
an effective parallel searching method to find the optimal
implementation, which leads to an auto-tuning engine.

4 Lower Bound Theory
4.1 Red-Blue Pebble Game Re-exploration
4.1.1 Basic Idea. In order to build I/O lower bounds of
convolutions, we revisit the red-blue pebble game. First of
all, it is not easy for a composite algorithms to deduce the
value of 𝑃 (𝑆) indeed, while we could try to estimate a valid
lower bound of 𝑃 (𝑆). In a DAG𝐺 (𝑉 , 𝐸), we use the notation
| · | to represent the number of vertices in any set, such
as |𝑉 | being the number of vertices in 𝑉 . Denote P𝑆 as the
set containing all possible options of S-partitions for DAG
𝐺 (𝑉 , 𝐸), and each element in P𝑆 represents some S-partition
of 𝐺 (𝑉 , 𝐸). Let

𝐻 (𝑆) = min
{𝑉1, · · · ,𝑉ℎ }∈P𝑆

|𝑉 |
max1≤𝑖≤ℎ |𝑉𝑖 |

. (2)

It is clear that 𝐻 (𝑆) represents a lower bound of the number
of sets in any S-partitions of 𝐺 (𝑉 , 𝐸). By the definition of
𝑃 (𝑆) in Section 2.1, we have 𝑃 (𝑆) ≥ 𝐻 (𝑆). This fact, together
with Equations (1) and (2), implies that 𝑄 satisfies

𝑄 ≥ 𝑆 · (𝑃 (2𝑆) − 1) ≥ 𝑆 · (𝐻 (2𝑆) − 1). (3)
Hence, we only need to estimate 𝐻 (2𝑆) instead of 𝑃 (2𝑆).
Secondly, from Equation (2), 𝐻 (𝑆) depends on the value of
max1≤𝑖≤ℎ |𝑉𝑖 |, which means that the fine-gained analysis on
𝑉𝑖 is the key. Thirdly, if we can find out the relationship
between 𝑉𝑖 and all sub-computations of 𝐺 (𝑉 , 𝐸), it would
become possible to estimate the number of vertices in 𝑉𝑖 .
Before deducing the upper bound of |𝑉𝑖 |, we formalize the
notation of multi-step partition of a DAG.

Definition 4.1. Assume that a DAG𝐺 (𝑉 , 𝐸) is decomposed
into𝑛 sub-DAGs𝐺1 (𝑈1, 𝐸1),𝐺2 (𝑈2, 𝐸2), · · · ,𝐺𝑛 (𝑈𝑛, 𝐸𝑛)where
𝐺 𝑗 (𝑈 𝑗 , 𝐸 𝑗 ) is corresponding to a sub-computation. {𝐺1 (𝑈1, 𝐸1),
· · · ,𝐺𝑛 (𝑈𝑛, 𝐸𝑛)} is called as a multi-step partition of𝐺 (𝑉 , 𝐸),
if and only if any input vertex of 𝐺 𝑗 (𝑈 𝑗 , 𝐸 𝑗 ) must be an out-
put vertex of 𝐺 𝑗−1 (𝑈 𝑗−1, 𝐸 𝑗−1), and the internal vertex sets
of all𝑈 𝑗 ’s are disjoint from each other.

It is clear that any sequence of sub-computations can be
represented as a multi-step partition of the DAG for the total
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computation. Assume that {𝐺1 (𝑈1, 𝐸1), · · · ,𝐺𝑛 (𝑈𝑛, 𝐸𝑛)} is a
multi-step partition of 𝐺 (𝑉 , 𝐸). If we are able to estimate
all the upper bounds of |𝑉𝑖 ∩ 𝑈 𝑗 | ( 𝑗 = 1, 2, · · · , 𝑛) by using
Property 2 and Property 3 in the definition of S-partition, it
is possible to obtain the maximum of |𝑉𝑖 |.

In the following, we study the feasibility on the derivation
of the upper bound of |𝑉𝑖 | based on recursive analysis. For
some 𝑗-th sub-computation, assume that the upper bound of
|𝑉𝑖 ∩𝑈 𝑗 | has been obtained successfully. The next problem
is how to estimate |𝑉𝑖 ∩𝑈 𝑗+1 |. Since |𝑉𝑖 ∩𝑈 𝑗 | seems not to
be associated with the upper bound of |𝑉𝑖 ∩𝑈 𝑗+1 |, we have
to focus on how the output set of 𝑈 𝑗 affects the ( 𝑗 + 1)-th
sub-computation. Denote 𝑂 𝑗 as the output set of𝑈 𝑗 , and 𝐷𝑖

as a dominator set of 𝑉𝑖 . Further, we apply a new concept of
vertex generation to determine the vertices in 𝑂 𝑗 which are
associated with 𝑉𝑖 ∩𝑈 𝑗+1.

Definition 4.2. In a DAG 𝐺 (𝑉 , 𝐸), a vertex set 𝑈 can gen-
erate another vertex set 𝑈 ′, if and only if every path from
an input of 𝑉 to a vertex in 𝑈 ′ contains some vertex in 𝑈 .
Furthermore,𝛩 (𝑈 ) represents a set containing all vertices
which can be generated by𝑈 .

Definition 4.2 presents a new concept of vertex generation
which describes the dependency relationship between ver-
tices. For example, the dominator set 𝐷𝑖 is just one of sets
which can generate𝑉𝑖 . It is obvious that all inputs of𝑉𝑖∩𝑈 𝑗+1
are included in 𝛩 (𝐷𝑖 ) ∩ 𝑉𝑖 ∩ 𝑂 𝑗 . Hence, |𝛩 (𝐷𝑖 ) ∩ 𝑉𝑖 ∩ 𝑂 𝑗 |
could be used to deduce the upper bound of |𝑉𝑖 ∩𝑈 𝑗+1 |. In
conclusion, if we can deduce the upper bounds of |𝑉𝑖 ∩𝑈 𝑗 |
and |𝛩 (𝐷𝑖 ) ∩𝑉𝑖 ∩𝑂 𝑗 |, it seems possible to obtain |𝑉𝑖 ∩𝑈 𝑗+1 |
and |𝛩 (𝐷𝑖 )∩𝑉𝑖∩𝑂 𝑗+1 | by using𝛩 (𝐷𝑖 )∩𝑉𝑖∩𝑂 𝑗 as the inputs
for𝑉𝑖∩𝑈 𝑗+1. Based on recursive analysis, all upper bounds of
|𝑉𝑖 ∩𝑈 𝑗+1 | ( 𝑗 = 1, 2, · · · , 𝑛) can be established, which would
lead to the upper bound of |𝑉𝑖 |.

After the feasibility analysis above on the derivation of the
upper bound of |𝑉𝑖 |, we use a simple example to show the intu-
ition of how to obtain the the upper bound of |𝑉𝑖 |. Assume DAG
𝐺 (𝑈 , 𝐸) of a composite algorithm has two sub-computations
(𝐺 (𝑈 , 𝐸) = 𝐺1 (𝑈1, 𝐸1) +𝐺2 (𝑈2, 𝐸2)). Denote 𝑘𝑖 as the num-
ber of vertices in the dominator 𝐷𝑖 of 𝑉𝑖 . According to the
definition of S-partition, we have |𝐷𝑖 | = 𝑘𝑖 ≤ 𝑆 , and divide
𝑘𝑖 into 𝑘𝑖 = 𝑘𝑖1 + 𝑘𝑖2 where 𝑘𝑖1 is the number of input vertices
for𝑉𝑖 ∩𝑈1 and 𝑘𝑖2 is the number of a part of input vertices for
𝑉𝑖 ∩𝑈2. For any integer 𝑘 , we find two functions 𝜑 𝑗 (𝑘) and
𝜓 𝑗 (𝑘), where 𝜑 𝑗 (𝑘) represents the maximum of vertices in
𝑈 𝑗 generated by using 𝑘 input vertices, and𝜓 𝑗 (𝑘) represents
the maximum of vertices in 𝑂 𝑗 generated by using 𝑘 input
vertices. Hence, |𝛩 (𝐷𝑖 ) ∩𝑉𝑖 ∩𝑈1 | is not larger than 𝜑1 (𝑘𝑖1),
and at most𝜓1 (𝑘𝑖1) vertices are generated as the inputs for
𝑉𝑖 ∩𝑈2. Hence, there are at most 𝑘𝑖2 +𝜓1 (𝑘𝑖1) input vertices
for 𝑉𝑖 ∩𝑈2. Further, |𝛩 (𝐷𝑖 ) ∩𝑉𝑖 ∩𝑈2 | ≤ 𝜑2 (𝑘𝑖2 +𝜓1 (𝑘𝑖1)) is

valid. Hence, we have

|𝑉𝑖 | ≤ |𝐷𝑖 | + |𝛩 (𝐷𝑖 ) ∩𝑉𝑖 ∩𝑈1 | + |𝛩 (𝐷𝑖 ) ∩𝑉𝑖 ∩𝑈2 |
≤ 𝑆 + 𝜑1 (𝑘𝑖1) + 𝜑2 (𝑘𝑖2 +𝜓1 (𝑘𝑖1))
≤ 𝑆 + max

𝑘1+𝑘2≤𝑆
(𝜑1 (𝑘1) + 𝜑2 (𝑘2 +𝜓1 (𝑘1))) .

Letting𝑇 (𝑆) = 𝑆 +max𝑘1+𝑘2≤𝑆 (𝜑1 (𝑘1) +𝜑2 (𝑘2 +𝜓1 (𝑘1))), we
achieve |𝑉𝑖 | ≤ 𝑇 (𝑆).

According to the discussion above, we deduce the general
I/O lower bound result of any composite algorithm by three
steps. Firstly, find two functions which can determine the
numbers of vertices generated by 𝐷𝑖 in 𝑉𝑖 ∩ 𝑈 𝑗 and 𝑉𝑖 ∩
𝑂 𝑗 respectively (Section 4.1.2). Secondly, deduce the upper
bound of |𝑉𝑖 | by using the upper bounds of the two functions
(Section 4.1.3). Finally, establish general I/O lower bound
result by substituting the upper bound of |𝑉𝑖 | into Equations
(2) and (3) (Section 4.1.4). Due to the page limit, the proofs
of all lemmas and theorems, and a detailed discussion on
relevant derivations, are in an extended technical report 1.

4.1.2 MaximumVertexGeneration Functions. For any
integer 𝑘 and a vertex set𝑈 with any dominator set𝐷 satisfy-
ing |𝐷∩𝑈 𝑗 | + |𝛩 (𝐷) ∩𝑂 𝑗−1 | ≤ 𝑘 , define two vertex generation
functions for the 𝑗-th sub-computation, as follows

𝜑 𝑗 (𝑈 , 𝑘) = |𝛩 (𝐷) ∩𝑈 ∩𝑈 𝑗 | and𝜓 𝑗 (𝑈 , 𝑘) = |𝛩 (𝐷) ∩𝑈 ∩𝑂 𝑗 |.

Here, 𝜑 𝑗 and𝜓 𝑗 represent the numbers of vertices generated
by 𝐷 in two vertex sets 𝑈 ∩ 𝑈 𝑗 and 𝑈 ∩ 𝑂 𝑗 respectively.
Furthermore, for any given 𝑘 and the 𝑗-th sub-computation,
we define maximum vertex generation functions as

𝜑 𝑗 (𝑘) = max
𝑈

𝜑 𝑗 (𝑈 , 𝑘) and𝜓 𝑗 (𝑘) = max
𝑈

𝜓 𝑗 (𝑈 , 𝑘). (4)

It is clear that 𝜑 𝑗 and𝜓 𝑗 provide the upper bound estimation
on the number of vertices in𝑈 𝑗 and 𝑂 𝑗 , which can be gener-
ated by a vertex 𝐷 satisfying |𝐷 ∩𝑈 𝑗 | + |𝛩 (𝐷) ∩𝑂 𝑗−1 | ≤ 𝑘 .

4.1.3 Estimation of Upper Bound of |𝑉𝑖 |. The analysis
in Section 4.1.1 inspires us that I/O lower bound establish-
ment is equivalent to finding the upper bound of |𝑉𝑖 |. Further,
two kinds of maximum vertex generation functions 𝜑 𝑗 and
𝜓 𝑗 in Section 4.1.2, provide us a powerful tool to respectively
estimate the numbers of vertices generated by 𝐷𝑖 in 𝑉𝑖 ∩𝑈 𝑗

and𝑉𝑖 ∩𝑂 𝑗 . In the following, we deduce the upper bound of
|𝑉𝑖 |, where 𝑉𝑖 is any set of an arbitrary S-partition of DAG.
First of all, we deduce two auxiliary results. Let 𝑂𝑖

𝑗 be the
subset of 𝑂 𝑗 such that for any 𝑣 ∈ 𝑂𝑖

𝑗 , any path from the
input set of 𝑉 to 𝑣 has at least one vertex which belongs in
∪𝑗

𝑘=1 (𝐷𝑖 ∩𝑈𝑘 ).

Lemma 4.3. 𝑂𝑖
𝑗 ∪ (𝐷𝑖 ∩𝑈 𝑗+1) is a dominator set of 𝑂𝑖

𝑗+1.

Lemma 4.4. 𝑂𝑖
𝑗 ∪ (𝐷𝑖 ∩𝑈 𝑗+1) is also a dominator of𝑉𝑖 ∩𝑈 𝑗+1.

1Available at https://arxiv.org/abs/2012.15667
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Next, by Lemma 4.3 and Lemma 4.4, we can obtain an
upper bound of |𝑉𝑖 |, which is important for I/O complexity
analysis under the red-blue pebble game model.

Theorem 4.5. Assume that {𝐺1 (𝑈1, 𝐸1), · · · ,𝐺𝑛 (𝑈𝑛, 𝐸𝑛)} is
a multi-step partition of a DAG 𝐺 (𝑉 , 𝐸). For any S-partition
{𝑉1, · · · ,𝑉ℎ} of 𝐺 (𝑉 , 𝐸), |𝑉𝑖 | has an upper bound

𝑇 (𝑆) = 𝑆 + max∑𝑛
𝑗=1 𝑘 𝑗 ≤𝑆

(𝜑1 (𝑘1) + 𝜑2 (𝑘2 +𝜓1 (𝑘1)) + · · · · · ·

+𝜑𝑛 (𝑘𝑛 +𝜓𝑛−1 (𝑘𝑛−1 +𝜓𝑛−2 (𝑘𝑛−2 · · · +𝜓1 (𝑘1))))). (5)

4.1.4 I/O Lower Bounds of Composite Algorithms.

Theorem 4.6. Assume that a DAG 𝐺 (𝑉 , 𝐸) describes an al-
gorithm with 𝑛 steps. All sub-computations in 𝑛 steps are cor-
responding to a multi-step partition of the DAG. Given a fast
memory of size 𝑆 , to finish the algorithm, the number 𝑄 of
I/O operations between the fast memory and the slow memory
satisfies

𝑄 ≥ 𝑆 ·
(

|𝑉 |
𝑇 (2𝑆) − 1

)
. (6)

Although Equation (6) is similar to Equation (1), it is easier
to estimate 𝑇 for a composite algorithm than obtaining 𝑃 .
Theorem 4.6 concludes how the I/O lower bound depends on
the upper bounds of 𝜑 𝑗 and𝜓 𝑗 . It not only presents a general
theoretical result, but also provides an I/O lower bound proof
approach for a composite algorithmwhich consists of several
stages with different kinds of computational patterns. This
proof approach can be described as three steps.

• Step 1: Estimate the total number of vertices |𝑉 | in
DAG 𝐺 (𝑉 , 𝐸) of a composite algorithm.

• Step 2: For the 𝑗-th step in the multi-step partition
of 𝐺 (𝑉 , 𝐸), estimate 𝜑 𝑗 and𝜓 𝑗 respectively. Based on
Equation (5), compute the value of 𝑇 (𝑆).

• Step 3: By Equation (6), deduce I/O lower bound.
Based on the above approach, we establish the I/O lower
bounds of the direct convolution and Winograd algorithm
respectively in the following sections.

4.2 I/O Lower Bound of Direct Convolution
Figure 4 shows a DAG 𝐺 (𝑉 , 𝐸) of the direct convolution. It
is clear that the direct convolution consists of two steps. The
first step is to generate a lot of product terms by using inputs
in the input images and kernels. In DAG𝐺 (𝑉 , 𝐸), we call the
product vertices as the vertices which are corresponding to
the product terms generated by the first step in the direct
convolution. Denote 𝐼𝑖 as the 𝑖-th sliding input tensor with
the size of𝑊𝑘𝑒𝑟 ×𝐻𝑘𝑒𝑟 ×𝐶𝑖𝑛 from an input image by using a
sliding window. Let 𝐾 𝑗 be the 𝑗-th kernel whose size is also
𝑊𝑘𝑒𝑟 ×𝐻𝑘𝑒𝑟 ×𝐶𝑖𝑛 . For each 𝐼𝑖 and 𝐾 𝑗 , the first step generates
𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟𝐶𝑖𝑛 product terms by executing the corresponding
element product of 𝐼𝑖 with 𝐾 𝑗 . The second step is to sum the
product terms generated by 𝐼𝑖 and 𝐾 𝑗 to form one of final
outputs based on a summation tree. The summation tree is a

Product
vertices

Step 1

Step 2

 Ph,j Pi,j

Output 
vertices

Ii
Input 

vertices

…… …… …… ……

+

+

+

+

+

+
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+
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Wker

Hker Cin

* * Oi
jIi  Kj

…… Ih……Kj……

…… …… …… ……

Oi
j Oh

j

Input Image Kernel Output Image

Summation
tree

Figure 4. DAG of Direct Convolution.

sub-DAGwith the tree structure in which, except for all input
vertices, the in-degree of other vertices is at most two, and all
inputs of the tree would be summed together to the only one
output (Figure 4). After the summation process, the direct
convolution is finished. Hence, the multi-step partition of
𝐺 (𝑉 , 𝐸) can be written as𝐺 (𝑉 , 𝐸) = 𝐺1 (𝑈1, 𝐸1) ∪𝐺2 (𝑈2, 𝐸2)
where the sub-DAG 𝐺𝑖 (𝑈𝑖 , 𝐸𝑖 ) is corresponding to the 𝑖-th
step of the direct convolution.

Lemma 4.7. In DAG of a direct convolution, the total number
of vertices is

|𝑉 | = (2𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟𝐶𝑖𝑛 − 1)𝑊𝑜𝑢𝑡𝐻𝑜𝑢𝑡𝐶𝑜𝑢𝑡

+𝑊𝑖𝑛𝐻𝑖𝑛𝐶𝑖𝑛 +𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟𝐶𝑖𝑛𝐶𝑜𝑢𝑡 . (7)

Denote 𝑅 as the maximum reuse number of each input
(element) in an input image by different sliding windows.
Its value is 𝑅 =𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟/𝜇2 where 𝜇 is the stride size. For
the two steps in the direct convolution, we can prove that
𝜓1 = 𝜑1, 𝜑1 (𝑘1) ≤ 2𝑆

√
𝑅𝑘1, and 𝜑2 (𝑘2) ≤ 𝑘2 − 1 are valid for

any integers 𝑘1 and 𝑘2, which leads to an estimation of 𝑇 (𝑆).

Lemma 4.8. For a direct convolution,𝑇 (𝑆) ≤ 4𝑆
√
𝑅𝑆 + 𝑆 − 1.

Based on Theorem 4.6, Lemma 4.7 and Lemma 4.8, we can
establish I/O lower bound of the direct convolution.

Theorem 4.9. The I/O lower bound of a direct convolution
(DC) is

𝑄𝑙𝑜𝑤𝑒𝑟 𝐷𝐶 = Ω

(
𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟𝐶𝑖𝑛𝑊𝑜𝑢𝑡𝐻𝑜𝑢𝑡𝐶𝑜𝑢𝑡

4
√
2𝑅𝑆

)
. (8)

In recent years, the minimum memory access of direct
convolution has been obtained [6, 11]. Based on the red-blue
pebble game model, we avoid to solve the intricate optimiza-
tion problem in [11]. Besides, based on the proposed general
theoretical result (Theorem 4.6), we analyze the two steps
of direct convolution directly, instead of transforming direct
convolution into matrix-matrix multiplication [6]. Further-
more, The I/O lower bound in Equation (8) is equivalent to
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the I/O lower bounds of direct convolution in [6, 11], How-
ever, our proposed result on the direct convolution is tighter
with the more precise coefficient.

4.3 I/O Lower Bound of Winograd Algorithm
InWinograd algorithm, since the size of three transformation
matrices 𝐴, 𝐵 and 𝐿 is small (Figure 2), we assume that they
can be always stored in fast storage, and their volume can
be ignored compared with the size 𝑆 of the fast memory.
Furthermore, as Winograd algorithm requires𝑊𝑘𝑒𝑟 = 𝐻𝑘𝑒𝑟 ,
we denote 𝑟 as𝑊𝑘𝑒𝑟 or 𝐻𝑘𝑒𝑟 briefly.

Lemma 4.10. In DAG of Winograd algorithm, the total num-
ber of vertices is

|𝑉 | = 𝑂
(
𝑊𝑜𝑢𝑡𝐻𝑜𝑢𝑡𝐶𝑜𝑢𝑡𝐶𝑖𝑛 (𝑒 + 𝑟 − 1)4

𝑒2

)
. (9)

For 4 sub-computations of Winograd algorithm (Figure 3),
we can deduce the upper bounds of 𝜑 𝑗 and 𝜓 𝑗 (1 ≤ 𝑗 ≤ 4).
𝜑1 (𝑘1) ≤ 6𝑘1 (𝑒 + 𝑟 − 1)4/𝑒𝑟 , 𝜓1 (𝑘1) ≤ 3𝑘1 (𝑒 + 𝑟 − 1)2/𝑒𝑟 ,
𝜓2 = 𝜑2, 𝜑2 (𝑘2) ≤ 𝑘2

√
𝑘2 + (𝑒 + 𝑟 − 1)2𝑆

√
𝑘2/𝑒2, 𝜑3 (𝑘3) ≤

𝑘3 − 1, 𝜓3 (𝑘3) ≤ min{𝑘3/2, 𝑆 (𝑒 + 𝑟 − 1)2/𝑒2}, and 𝜑4 (𝑘4) ≤
min{(2𝑘4−1)𝑒2, (2(𝑒+𝑟−1)2−1)𝑆} are valid for any integers
𝑘1, 𝑘2, 𝑘3 and 𝑘4.

Lemma 4.11. For Winograd algorithm,

𝑇 (𝑆) = 𝑂
(
2 (𝑒 + 𝑟 − 1)3

𝑒𝑟
𝑆
√
𝑆 + 6(𝑒 + 𝑟 − 1)2

𝑒𝑟
𝑆

)
. (10)

So far, the lower bound of I/O complexity of Winograd
algorithm can be established according to the proof approach
in Section 4.1.4.

Theorem 4.12. The I/O lower bound of Winograd algorithm
(WA) is

𝑄𝑙𝑜𝑤𝑒𝑟 𝑊𝐴 = Ω

(
𝑊𝑜𝑢𝑡𝐻𝑜𝑢𝑡𝐶𝑜𝑢𝑡𝐶𝑖𝑛 (𝑒 + 𝑟 − 1)𝑟

𝑒
√
𝑆

)
. (11)

It is worth mentioning that, if 𝑅 is 1 in Equation (8) and
𝑒 is 1 in Equation (11), the I/O lower bounds of the direct
convolution and Winograd algorithm are similar to that of
matrix-matrix multiplication [17]. In this case, the lower
bound of data movement is inversely proportional to

√
𝑆 ,

which is consistent with the communication-optimal imple-
mentation of matrix-matrix multiplication [20].

5 Near I/O-optimal Strategy
5.1 Methodology for Near I/O-optimal Strategy
In the proposed general I/O lower bound theory, the highest
order term in I/O lower bound result (6) must be determined
by some 𝜑 𝑗 due to the definition (5) of𝑇 . Specifically, for the
direct convolution, the maximum vertex generation function
𝜑2 for the last step determines the highest order term in I/O
lower bound (Equation (8)). For Winograd algorithm, the
highest order term in I/O lower bound (Equation (11)) comes

from 𝜑3 for the third step, rather than 𝜑4 for the last step. As
the highest order term of I/O lower bound result represents
the main part of I/O number, the relevant 𝜑𝑖 points to the
major process which involves most of I/O operations.
By the function 𝜑 𝑗 which determines the highest order

term in I/O lower bound result of a composite algorithm,
we are able to find which data should be fully reused in the
on-chip memory, and focus on reducing I/O operations in
the 𝑗-th step of the composite algorithm. In detail, for the
direct convolution, 𝜑2 which determines the highest order
term in Equation (8), indicates that minimizing the number
of I/O operations needs to maximize the output data reuse.
For Winograd algorithm, 𝜑3 inspires us to maximize the data
reuse of two temporary arrays which are involved during
the third step.
After determining which data reuse should be exploited,

the dataflow strategy can be designed to maximize the reuse
of such data. For the direct convolution and Winograd al-
gorithm, we propose different schedules by exploiting the
reuse of relevant data respectively.

5.2 Dataflow Design for Direct Convolution
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Figure 5. Dataflow Design for Direct Convolution.

For the direct convolution, the highest order term of I/O
lower bound (Equation (8)) comes from𝜑2 for the last step.𝜑2
indicates that the output data reuse should be fully exploited,
which implies that we need to use the least inputs to produce
the most outputs. Hence, the dataflow design should assign
most of the effective on-chip memory to portions of outputs.
Figure 5 shows a sub-block of the output image with the
dimension of 𝑥 × 𝑦 × 𝑧. Based on the fundamental principle
above, to reach the minimum off-chip memory access, we
tend to choose 𝑥𝑦𝑧 ≈ 𝑆/𝑁𝑝 where 𝑁𝑝 is the total number of
active processors.
To compute the output sub-block 𝑥 × 𝑦 × 𝑧, we need the

inputs in the corresponding 𝑥 ′ × 𝑦 ′ locations from all input
channels (the yellow sub-block in an input image) and 𝑧 ker-
nels associated with the partial output channels (the yellow
kernels), as shown in Figure 5. Since the on-chip memory
is limited and tends to be used for storing the most outputs,
it is necessary to load the required inputs and kernels by a
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series of stages, rather than at a time. During each stage, a
portion of inputs 𝑥 ′ × 𝑦 ′ × 𝛼 and the corresponding weights
𝐻𝑘𝑒𝑟 ×𝑊𝑘𝑒𝑟 × 𝛼 of 𝑧 kernels are loaded into the on-chip
memory (Figure 5). Since each input of the 𝑖-th channel only
can be reused by the weights of the 𝑖-th channel, rather than
other channels. In order to put the larger output sub-block in
the limited on-chip memory, we set 𝛼 = 1, which indicates
that our dataflow design is to load a 𝑥 ′ × 𝑦 ′ tile with a fixed
channel index firstly and then slide the tile along the channel
direction.
After loading a 𝑥 ′ × 𝑦 ′ input tile and the corresponding

weights of 𝑧 kernels into the on-chip memory, a partial sum
can be performed on the output sub-block. To update the
whole output sub-block, we continuously slide the 𝑥 ′ × 𝑦 ′
input tile along the channel direction, and load the corre-
sponding inputs and weights (in the yellow blocks), and per-
form partial updates. Consequently, updating each output
sub-block only needs to load the required inputs and weights
from the off-chip memory to on-chip memory exactly once.
Meanwhile, different output sub-blocks are updated by 𝑁𝑝

processors in parallel.
In our dataflow design, there are (𝑊𝑜𝑢𝑡𝐻𝑜𝑢𝑡𝐶𝑜𝑢𝑡 )/(𝑥𝑦𝑧)

output sub-blocks in total. To update each sub-block, we
need 𝑥 ′𝑦 ′𝐶𝑖𝑛 inputs from an input image and𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟𝐶𝑖𝑛𝑧

weights from 𝑧 kernels. As 𝑅 = 𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟/𝜇2, 𝑥 ′ ≈ 𝜇𝑥 and
𝑦 ′ ≈ 𝜇𝑦, the I/O volume of reading data is

𝑄𝐷𝐶 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ≈
𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡𝐶𝑜𝑢𝑡

𝑥𝑦𝑧

(
𝐻𝑘𝑒𝑟𝑊𝑘𝑒𝑟𝐶𝑖𝑛 (𝑧 +

𝑥𝑦

𝑅
)
)

≥ 𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡𝐶𝑜𝑢𝑡𝐻𝑘𝑒𝑟𝑊𝑘𝑒𝑟𝐶𝑖𝑛

(
2

√
1

𝑅𝑥𝑦𝑧

)
, (12)

where the final equality holds if and only if 𝑥𝑦 = 𝑅𝑧. By
the fact 𝑅 = 𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟/𝜇2, 𝑥 ′ = 𝜇𝑥 and 𝑦 ′ = 𝜇𝑦 again, the
requirement of 𝑥𝑦 = 𝑅𝑧 leads to 𝑥 ′𝑦 ′ = 𝑧𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟 , which
determines the optimal size of each 𝑥 ′ × 𝑦 ′ tile. Further, the
I/O volume of storing outputs is𝑊𝑜𝑢𝑡𝐻𝑜𝑢𝑡𝐶𝑜𝑢𝑡 . When we
choose 𝑥𝑦𝑧 ≈ 𝑆/𝑁𝑝 and 𝑥𝑦 = 𝑅𝑧, the total I/O volume is

𝑄𝐷𝐶 ≈ 2𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡𝐶𝑜𝑢𝑡𝐻𝑘𝑒𝑟𝑊𝑘𝑒𝑟𝐶𝑖𝑛√
𝑅𝑆/𝑁𝑝

+ 𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡𝐶𝑜𝑢𝑡 . (13)

If 𝑁𝑝 = 1 and 𝐻𝑘𝑒𝑟𝑊𝑘𝑒𝑟𝐶𝑖𝑛√
𝑆𝑅

≫ 1 which is easily satisfied in
CNN applications due to 𝑆 usually being equal to or less than
KB level, 𝑄𝐷𝐶 reaches the I/O lower bound (Theorem 4.9).
This fact indicates that, sequentially executing the dataflow
and assigning most of the effective on-chip memory to the
outputs can reach the minimum off-chip memory access.
Otherwise, if we perform the dataflow in parallel, Equation
(13) means that fully utilizing the on-chip memory owned by
each processor to produce the partial sum could maximize
the output data reuse and reduce the data transmission in
the memory hierarchy.

In order to view the proposed dataflow at a high level, we
conclude the details of this design as follows:

• The input data reuse is fully considered. In fact, one
input is reused by weights of 𝑧 kernels, and one weight
is reused by 𝑥×𝑦 outputs. On the other hand, one input
is also reused by at most 𝑅 sliding windows on each
𝑥 ′ × 𝑦 ′ tile.

• The output data reuse is fully exploited. In fact, the
partial sum can always stay into the on-chip memory
during the update process, and they are just written
back to the off-chip memory only once. To make sure
the larger output sub-block can be loaded in the on-
chip memory, the optimal tiling is designed to slide the
𝑥 ′ × 𝑦 ′ tile along the channel direction, which reveals
that the loading of inputs along the width and height
directions should be considered prior to the channel
direction.

• In order to achieve the I/O lower bound, the 𝑥 × 𝑦 × 𝑧
output sub-block needs to satisfy 𝑥𝑦 = 𝑅𝑧, which is
called as the optimality condition in this work. Under
this condition, 𝑥 ′𝑦 ′ = 𝑧𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟 , which determines
the optimal size of each input tile.

5.3 Dataflow Design for Winograd Algorithm
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Figure 6. Dataflow Design for Winograd Algorithm.

Similar to the analysis in the dataflow design for direct
convolution, 𝜑3 determining the highest order term in I/O
lower bound of Winograd algorithm (Equation (11)), leads
us to maximize the data reuse of temporary arrays involved
during the third step.
To compute each 𝑥 × 𝑦 × 𝑧 output sub-block, Winograd

algorithm needs to partition further sub-block into 𝑥𝑦/𝑒2
smaller sub-blocks each of which has the size of 𝑒 × 𝑒 × 𝑧.
Each 𝑒 × 𝑒 × 𝑧 small sub-block is computed by using the
corresponding (𝑒 +𝑟 −1) × (𝑒 +𝑟 −1) locations from all input
channels of the input images (i.e., the yellow block in the
input image) and 𝑧 kernels associated with the partial output
channels (Figure 6), which are loaded into on-chip memory
by a series of stages due to the limited on-chipmemory. Based
on the same discussion in the dataflow design, each stage
loads a (𝑒 + 𝑟 − 1) × (𝑒 + 𝑟 − 1) input tile at an input channel
(which means 𝛼 = 1) and the corresponding 𝑟 2 weights at the
same channel of a kernel, and then produce a partial sum 𝛬
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(Figure 6). We allocate two (𝑒 + 𝑟 − 1) × (𝑒 + 𝑟 − 1) temporary
arrays in the on-chipmemory for the summation of all partial
sums along the channel direction. The first array is used to
save the last summation result, and the second one is for
the generation of a new partial sum. When a new partial
sum is created in the second array, it would be added to the
first array. After collecting all partial sums along the channel
direction, the (𝑒 + 𝑟 − 1) × (𝑒 + 𝑟 − 1) summation matrix
𝛱 naturally generates in the first array (Figure 6), which
would be multiplied with a transform matrix to deduce 𝑒 × 𝑒
outputs in the same channel of the small output sub-block.
To complete the update of each small sub-block with the size
of 𝑒 × 𝑒 × 𝑧, each processor continuously loads the required
inputs and weights (the red blocks in Figure 6), and performs
partial updates. In order to exploit the parallelism of the
computation of 𝑥 × 𝑦 × 𝑧 outputs, each processor could use
serval threads to execute the computation of all 𝑒 × 𝑒 tiles in
a channel in parallel. For the update of each 𝑥 × 𝑦 × 𝑧 sub-
block, every 𝑒2 outputs rely on two (𝑒 + 𝑟 − 1) × (𝑒 + 𝑟 − 1)
temporary arrays at a time. To maximize the data reuse of
temporary arrays, we should use the most on-chip memory
to store the 2𝑥𝑦𝑧/𝑒2 required temporary arrays. Hence, our
design chooses 2 (𝑒+𝑟−1)2

𝑒2 𝑥𝑦𝑧 ≈ 𝑆/𝑁𝑝 .
In the dataflow above, an output image is divided into

(𝑊𝑜𝑢𝑡𝐻𝑜𝑢𝑡𝐶𝑜𝑢𝑡 )/(𝑥𝑦𝑧) sub-blocks. For each sub-block, we
need to load 𝑥 ′𝑦 ′𝐶𝑖𝑛 inputs from an input image and 𝑧𝑟 2𝐶𝑖𝑛

weights from 𝑧 kernels. As 𝜇 = 1 is only valid in Winograd
algorithm, we have 𝑥 ′ ≈ 𝑥 and 𝑦 ′ ≈ 𝑦. The I/O volume of
reading data can be estimated as follows

𝑄𝑊𝐴 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ≈
𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡𝐶𝑜𝑢𝑡

𝑥𝑦𝑧

(
𝑥𝑦𝐶𝑖𝑛 + 𝑧𝑟 2𝐶𝑖𝑛

)
≥ 𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡𝐶𝑜𝑢𝑡𝐶𝑖𝑛

(
2 𝑟
√
𝑥𝑦𝑧

)
, (14)

where the final equality holds if and only if 𝑥𝑦 = 𝑟 2𝑧. Due
to 𝑅 = 𝑟 2 in Winograd algorithm, 𝑥𝑦 = 𝑟 2𝑧 leads to 𝑥𝑦 = 𝑅𝑧,
which is similar to the optimality condition for the dataflow
of direct convolution. In addition, the I/O volume of writing
outputs is𝑊𝑜𝑢𝑡𝐻𝑜𝑢𝑡𝐶𝑜𝑢𝑡 . As 2 (𝑒+𝑟−1)2

𝑒2 𝑥𝑦𝑧 ≈ 𝑆/𝑁𝑝 , the total
I/O volume is

𝑄𝑊𝐴 ≈ 2𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡𝐶𝑜𝑢𝑡𝐶𝑖𝑛𝑟 (𝑒 + 𝑟 − 1)
𝑒
√
𝑆/𝑁𝑝

+ 𝐻𝑜𝑢𝑡𝑊𝑜𝑢𝑡𝐶𝑜𝑢𝑡 .

For our dataflow design of Winograd algorithm, we list
two specific details as follows:

• The dataflow design of direct convolution mainly fo-
cuses on the output data reuse, while the dataflow
design of Winograd algorithm is to exploit the data
reuse of temporary arrays and combine input data
reuse in the best way. In addition, each (𝑒 + 𝑟 − 1)2
inputs are reused by weights of 𝑧 kernels, and each 𝑟 2
weights are reused by 𝑒2 outputs.

• The parallelism of the computation of 𝑥 ×𝑦×𝑧 outputs
is fully considered. The update of every 𝑒 × 𝑒 tiles at
an output channel is performed in parallel. To achieve
a high parallelism and data reuse, the most on-chip
memory is for loading the temporary arrays.

6 Auto-tuning for Implementation
6.1 Auto-tuning Engine
The dataflow design above just provides a coarse-grained
strategies to minimize the off-chip memory access. In order
to achieve an optimal implementation, fine-grained computa-
tional schedule and memory access schedule are still needed.
In this section, we mainly consider the optimal implementa-
tion on accelerators, such as GPU. Similar optimization can
be used for other hardware backends.

Cost Model

Template
Manager

Configuration 

Explorer

Updating

Training

Searching

1

2

3

Optimal 
Configuration 

Random 

Configurations 

Data Set

Figure 7. Auto-tuning Engine.

For a given coarse-grained schedule, we define the config-
uration as a group of key performance parameters, including
specific input shape and layout, number of threads in each
thread block, tiling size, the shared memory size allocated to
each thread block. Each configuration provides the descrip-
tion of an implementation way. All possible configurations
constitute a configuration space whose size usually is over
billions. In order to rapidly find the optimal choice in the
huge space, we built an auto-tuning engine based on the
learning-based cost modeling method. Figure 7 shows the
overview of our auto-tuning engine, which consists of three
main components: a templatemanager that measures the exe-
cution time of any given configuration, and a cost model that
predicts the cost of any given configuration, and a configu-
ration explorer that searches promising new configurations.

TemplateManager: In the low-level implementation, the
proposed dataflow schedules are described as a template.
Template manager is in charge of all schedule template, and
generates various configurations for each template.

Cost Model:We use XGBoost method [4] to train a gra-
dient tree boosting model as the cost model to predict the
runtime of any configuration. The model is trained using
measurement data, which is consisted of a configuration and
its execution time. During the auto-tuning process, the cost
model would be updated periodically as the configuration
explorer finds more configurations and updates the training
dataset.

ConfigurationExplorer:During the configuration search-
ing, the configuration explorer uses the trained cost model to
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predict the cost of any configuration, and searches the poten-
tial optimal configuration in the search space. Although the
cost model could reduce the time to evaluate configurations,
the searching process is still expensive due to a huge search
space with over billions of size.

6.2 Searching Based on Optimality Condition
In order to improve the search efficiency, we construct a
searching domain based on the optimality condition, which
is helpful for significantly reducing the size of search space.
Besides, we use a heuristic method to rapidly search promis-
ing configurations.

Searching Domain: Table 1 presents the searching do-
main. According to the dataflow design, the tile is loaded into
on-chip memory as a whole, which implies that 𝑥𝑦𝑧 ≤ 𝑆𝑏 , 𝑆𝑏
is the shared memory size for each block. Furthermore, the
optimality condition 𝑥𝑦 = 𝑅𝑧 leads to 𝑧 ≤

√
𝑆𝑏/𝑅 and 𝑥𝑦 ≤√

𝑆𝑏𝑅. In order to achieve a high level parallelism, at least
two thread blocks are guaranteed to concurrently run on
one streaming multiprocessor (SM), resulting in 𝑆𝑏 ≤ 𝑆𝑠𝑚/2.

Table 1. Searching Domain.
Parameters Definition and Constrains

𝐻𝑖𝑛 ,𝑊𝑖𝑛 ,𝐶𝑖𝑛 Input shape
𝐻𝑜𝑢𝑡 ,𝑊𝑜𝑢𝑡 ,𝐶𝑜𝑢𝑡 Output shape

𝐻𝑘𝑒𝑟 ,𝑊𝑘𝑒𝑟 Kernel shape
CHW, CWH, HWC Layout

𝑆𝑠𝑚 Shared memory size of SM

𝑆𝑏
Shared memory size for each block

𝑆𝑏 ≤ 𝑆𝑠𝑚/2

𝑥 , 𝑦, 𝑧 Tile sizes being the factor of 𝐻𝑜𝑢𝑡 ,𝑊𝑜𝑢𝑡 ,𝐶𝑜𝑢𝑡 ,
𝑥𝑦𝑧 ≤ 𝑆𝑏 , 𝑧 ≤

√
𝑆𝑏/𝑅, and 𝑥𝑦 ≤

√
𝑆𝑏𝑅

𝑁𝑥𝑡 , 𝑁𝑦𝑡 , 𝑁𝑧𝑡 Thread numbers being the factor of 𝑥 , 𝑦, 𝑧

Searching Process: To find many promising configura-
tions, the configuration explorer performs a searching pro-
cess to select configurations from the searching domain. At
the beginning of the searching process, 𝑛𝑠 random configu-
rations are chosen as initial guesses. During each searching
step, the configuration explorer randomly walks from each
initial guess to its nearby configuration in the searching
domain. Each random walk tends to converge on a configu-
ration that has lower predicted costs. Consequently, the 𝑛𝑠
parallel random walks generate 𝑛𝑠 promising configurations,
which are saved as the initial guesses for the next searching
step. Until all predicted costs of the 𝑛𝑠 selected configura-
tions are lower than a threshold, they are outputted as a
solution.

6.3 Auto-tuning Process
The proposed auto-tuning engine searches the optimal imple-
mentation iteratively. Each iteration consists of three stages:
(1) Model Training that trains the cost model, (2) Configura-
tion Searching that applies the cost model to select multiple
promising configurations, (3)Dataset Updating that measures
the new configurations and updates the dataset. Until the

measurement runtime of the selected configurations does
not decrease for hundreds of iterations, the auto-tuning pro-
cess would end. The parallel strategy corresponding the best
selected configuration is the implementation of our near
I/O-optimal dataflow.

7 Evaluation
In this section, we evaluate our proposed near I/O-optimal
dataflow designs for the direct convolution and Winograd al-
gorithm respectively. We first evaluate the optimal dataflow
implementations derived from the proposed auto-tuning en-
gine, and then compare the speeds of different automation
searching methods, and finally demonstrate our implemen-
tation can achieve performance speedup in end-to-end cases.
Our evaluation is mainly performed in the NVIDIA 1080Ti
and V100 GPUs.
To evaluate our work from a broad scale, we use syn-

thetic convolution cases with different𝑊𝑘𝑒𝑟 𝐻𝑘𝑒𝑟 and the
stride 𝜇. On the one hand, in cuDNN library, the direct im-
plementation of convolutions mainly has two approaches:
direct convolution and image2col method [16], where the
direct convolution occasionally fails for some different input
shapes, and the image2col method are usually better than
the direct convolution. In order to present the superior of
our implementations, we compare with the best one of two
direct implementations in cuDNN. On the other hand, the
indirect implementation of convolutions in cuDNNmainly is
Winograd algorithm. The following evaluation compares the
runtime of different convolution kernels of ours and cuDNN,
where CUDA-9.0 and cuDNN-7.0.3 are used.

To evaluate the auto-tuning engine, we first compare the
searching performance of our proposed searching method
with different searching strategies in TVM, which represents
the state-of-the-art technique for auto-tuning a convolution
operation, and then compare our searched implementation
with the optimal solution provided by TVM.

7.1 Performance Comparison with cuDNN
Figure 8 shows the performance comparison on the imple-
mentations of the direct convolution and Winograd algo-
rithm respectively. We can find that our I/O-optimal dataflow
implementations can achieve 3.32× performance speedup
on average. We have three important observations from the
results.
Firstly, the benefit from the dataflow is consistent as the

𝐻𝑖𝑛 and𝑊𝑖𝑛 increase, and our methodology can have signif-
icant performance improvement. This mainly owes to the
design of exploiting input and output data reuse. I/O dataflow
design maximizes the data reuse of the 𝑥 ′ ×𝑦 ′ tile at a given
channel. When 𝐻𝑖𝑛 and𝑊𝑖𝑛 become larger, the more data
reuse can be achieved.

Secondly, when 𝐶𝑜𝑢𝑡 is small, the dataflow contribution is
always higher for the direct convolution. Conversely, when
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Figure 8. Performance Comparison of Dataflow Design over
cuDNN for Direct Convolution and Winograd Algorithm on
1080Ti GPU. For all convolutions, 𝐻𝑘𝑒𝑟 ×𝑊𝑘𝑒𝑟 = 3 × 3 and
𝐶𝑖𝑛 = 256.

𝐶𝑜𝑢𝑡 is large, the benefit from the dataflow is always higher
for Winograd algorithm.
Thirdly, on the whole, the dataflow benefits decrease as

the stride 𝜇 increase. This is because themotivation of the I/O
dataflow design is to minimize the off-chip memory access.
When the stride 𝜇 is larger, more off-chip memory accesses
gradually become independent with each other.
Furthermore, Figure 9 shows the batched convolution

test. It is clear that, compared with scaling the batch size of
cuDNN, our I/O-optimal dataflow still achieves 1.51× per-
formance speedup on average. On the one hand, For a given
batch-size, when 𝐻𝑖𝑛 and𝑊𝑖𝑛 increases, the performance
improvement from our dataflow design gradually becomes
apparent. On the other hand, when𝐻𝑖𝑛 and𝑊𝑖𝑛 are small, the
dataflow contribution is small. However, when 𝐻𝑖𝑛 and𝑊𝑖𝑛

become larger, the convolution needs more I/O operations,
and the benefit from the dataflow becomes greater. When
𝐻𝑖𝑛 and𝑊𝑖𝑛 are 112, the speedup becomes larger with the
batch size increasing.

7.2 Performance Comparison with TVM
Table 2 presents the detail information about configuration
space, the number of iterations and the best solution’s run-
time of the auto-tuning engine and TVM during searching
the optimal implementations of different convolution layers
in AlexNet on V100 GPU. We have three important obser-
vations from the experiment results. Firstly, the constraints
for the templates and the proposed searching domain can
successfully reduce the size of configuration space to about
20% − 50% for the direct convolution and 50% for Winograd
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Figure 9. Performance Comparison of Dataflow Design over
cuDNN for Batched Direct Convolution Test on 1080Ti GPU.
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Figure 10. Comparison of Different Automation Methods.

algorithm. Secondly, the proposed auto-tuning engine finds
the final solution faster than TVM, thanks to the proposed
searching domain. Thirdly, the final configuration found by
the auto-tuning engine usually has a shorter runtime than
the best solution in TVM. The three facts above demonstrate
that the auto-tuning engine has the strong scaling efficiency
for searching optimal configuration.
Figure 10 shows the comparison of different automation

methods for searching an optimal direct convolution imple-
mentation of the conv1 in Table 2 on V100 GPU. The ML-
based model in TVM starts with no training data and uses the
collected data to improve itself. The X-axis is the number of
iterative steps and the Y-axis is the floating-point arithmetic
efficiency in GFlops. From Figure 10, we observe a similar
trend for all automation methods. During the iterations, each
automation method gradually finds the better configuration
with higher floating-point arithmetic efficiency. It should
be noted that the proposed auto-tuning engine is able to
find better configurations much faster than the others. This
mainly owes to two reasons. On the one hand, the I/O opti-
mality condition is used to prune configuration search space,
which leads to the proposed searching domain. On the other
hand, the parallel searching method effectively improves the
searching process in the searching domain.
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Table 2. Comparison of TVM with Auto-tuning Engine (ATE).
Convolution Parameter Size of Search Space Iterations Performance of Solution (GFlops)

𝐶𝑖𝑛 𝐻𝑖𝑛/𝑊𝑖𝑛 𝐶𝑜𝑢𝑡 𝐻𝑘𝑒𝑟 /𝑊𝑘𝑒𝑟 stride padding TVM ATE ATE/TVM TVM ATE TVM/ATE TVM ATE ATE/TVM

conv1 3 227 96 11 4 0 9.29 × 106 4.81 × 106 51.78% 142 197 0.72 2927.30 5377.06 1.84
conv2 96 27 256 5 1 2 2.25 × 108 4.76 × 107 21.16% 762 449 1.53 5909.73 6426.83 1.09
conv3 256 13 384 3 1 1 1.87 × 107 4.51 × 106 24.12% 877 389 2.25 2107.68 2555.93 1.21
conv4 384 13 256 3 1 1 1.54 × 107 5.23 × 106 33.96% 784 407 1.93 2040.57 2040.92 1.00

conv3_wino 256 13 384 3 1 1 2.59 × 105 1.36 × 105 52.51% 352 202 1.74 6700.77 6726.17 1.01
conv4_wino 384 13 256 3 1 1 1.58 × 105 8.06 × 104 51.01% 587 286 2.05 7121.57 7118.23 1.00

7.3 Performance Comparison on CNN Models
The convolution layer is important and popular in many
modern CNN models. In the following, we demonstrate that
our proposed auto-tuning engine can help for accelerating
CNN inference. In the experiment on end-to-end models, the
runtime is the time for inference (or forward computation).

Figure 11 shows the performance comparison of the dataflow
design and cuDNN on different CNNmodels. For SqueezeNet,
Vgg-19, ResNet-18, ResNet-34 and Inception-v3, our optimal
implementation can achieve 2.67×, 1.09×, 1.02×, 1.09× and
1.23× performance speedup respectively compared with us-
ing cuDNN. The performance benefits come from two as-
pects. The different kinds of convolutions take up the main
part of CNN models. Besides, for each convolution layer, the
proposed auto-tuning engine could find a better implemen-
tation than cuDNN.
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Figure 11. Performance Comparison of Dataflow Design
over cuDNN on different CNN Models on V100 GPU.

7.4 Sensitivity for GPU Architecture
To demonstrate the scalability on GPU architecture, we evalu-
ate the proposed dataflow with auto-tuning engine on Pascal
and Maxwell architectures. We use one kind of Pascal ar-
chitectures: 1080Ti, and one kind of Maxwell architecture:
GTX Titan X. Figure 12 shows the evaluation results on the
above two architectures. The proposed dataflow is much
faster than cuDNN. Compared with the solution of TVM, for
the direct convolution, the improvement of our implemen-
tation on these architectures can achieve about 1.05× and
1.27× respectively. For Winograd algorithm, the speedups
of our dataflow are 1.12× and 1.01× respectively on these
architectures.

In addition, we compare the dataflow design with MIOpen
library on AMD GFX906 platform (Pre-Wukong GPU), and
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Figure 12. Sensitivity on different GPU architectures.

use ROCm-2.9 and MIopen-2.1 in this evaluation. On aver-
age, the performance improvement is up to 2.86× and 1.10×
for direct convolution and Winograd algorithm respectively.
Besides, compared with the solution of TVM, our optimal
implementation achieves 1.21× speedup for the direct convo-
lution and 1.03× speedup for Winograd algorithm. We find
that our optimal implementation is well ported to different
architectures and achieve a consistent performance speedup.

8 Related Work
The red-blue pebble game is widely used in theory analysis
of communication lower bound to guide optimal communi-
cation strategy. After Hong & Kung established the I/O com-
plexity theory [17], Savage developed the notion of S-span to
derive Hong-Kung style lower bounds [22]. Kwasniewski et
al. provided a new proof of I/O complexity of matrix-matrix
multiplication and designed a parallel algorithm to reach its
lower bound [20]. Although the red-blue pebble game model
has been proposed for many years [1–3, 12, 23, 27], it is still
difficult to use this model to establish I/O lower bounds of
composite algorithms which involve several different kinds
of computational patterns [13]. To get around the essential
difficulties, the lower bound of composite algorithms was
considered by modifying the red-blue pebble game model
into a red-blue-white pebble game model [13], which uses
some restrictions on models, such as the limitation of disal-
lowing re-computation of values on the DAG [13]. However,
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such restrictions seem inappropriate for the lower bound
analysis of some convolution algorithms. For example, Wino-
grad algorithm allows re-computation of values to decrease
the number of I/O operations. In order to solve the difficul-
ties, this work at first establishes a general I/O lower bound
theory for any composite algorithm based on the red-blue
pebble game model without introducing the limitation of
disallowing re-computation of values on the DAG.
For convolutions in DNN, Demmel et al. estimated the

minimum memory access of direct convolution by solving
an intricate optimization problem [11]. Furthermore, Chen
et al. transformed the direct convolution into Matrix-matrix
multiplication, and successfully deduced the lower bound of
the off-chip communication of direct convolution in CNN
accelerators [6]. However, our work is the first time to per-
form a systematic analysis of diverse convolution algorithms
in deep learning by developing a general I/O lower bound
theory for any composite algorithm. It is worth mentioning
that the I/O lower bound in Equation (8) is equivalent to the
I/O lower bound of direct convolution in [6, 11], while our
proposed result on direct convolution is the tighter lower
bound with a more precise coefficient. Besides, the previous
works [6, 11] mainly focus on the direct convolution, and
seem not easy to adapt to Winograd algorithm. However, to
the best of our knowledge, this work at first establishes the
I/O lower bound of Winograd algorithm.
To fully exploit the research efforts of convolution algo-

rithm and micro-architecture optimizations, many software
libraries, such as cuDNN, are launched to pack these opti-
mizations together in order to reduce programming difficulty.
However, due to the increasing demand on performance,
directly using the software libraries sometimes is not sat-
isfactory. In recent years, the convolution optimization is
widely concerned. Some excellent implementations are pro-
posed for different convolution algorithms [7, 18, 21, 24, 25].
However, most of the studies mainly focus on the optimiza-
tion from experience [32]. In this work, we try to propose
the I/O-optimal dataflow based on the lower bound theoreti-
cal analysis. By comparing the I/O volume of the dataflow
with the lower bound, we find the optimality condition for
I/O-optimal design. On the other hand, in the convolution
optimization, the combinatorial choices of memory access,
threading pattern, and novel hardware primitives creates
a huge configuration space. A common way is to adopt a
predefined cost model to guide the search, but building an
accurate cost model is difficult due to the increasing com-
plexity of modern hardware. To addresses these challenges,
some searching strategies based on the learning-based cost
models are proposed, in which TVM represents the state-of-
the-art auto-tuning technique. However, it still needs a large
search cost due to the huge search space. In this work, this
work firstly considers to use the deduced optimality condi-
tion to fully reduce the size of search space, and proposes
an effective parallel searching method to find the optimal

implementation, which leads to an effective auto-tuning en-
gine. Compared with TVM, it could faster find a better final
solution.

9 Conclusion
In this paper, we have tackled the challenge of building I/O
lower bound theory and designing I/O-optimal dataflow im-
plementations for convolutions. By fine-grain viewing the
recent lower bound theory developed under the red-blue
pebble game model, we fully consider the influence of sub-
computations to each other, and propose a general I/O lower
bound theory for composite algorithms. Based on the pro-
posed theory, we establish the communication lower bound
results for the typical representatives of direct and indirect
convolution methods, which are the direct convolution and
Winograd convolution algorithms. Furthermore, for each
approach, we design the near I/O-optimal dataflow strategy
based on the lower bound analysis. By developing an auto-
tuning engine for searching the optimal configuration, we
push the envelope of performance of our dataflow designs
further.
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A Artifact Appendix
A.1 Abstract
A.2 Artifact check-list (meta-information)

• Program: Python and C/C++ code
• Run-time environment: NVIDIA GPU run-time environ-
ment.

• Hardware: Any GPU with the compute capability of no
less than 3.0.

• Output: The time results of auto-tuning engine.
• Howmuchdisk space required (approximately)?: 20GB
• How much time is needed to prepare workflow (ap-
proximately)?: 1 hour.

• How much time is needed to complete experiments
(approximately)?: One week.

A.3 Description
A.3.1 How to access. The artifact provides the source
code and installation instructions. The environment can be
deployed with them, and then we provide several scripts to
verify different experiments with commands.

A.3.2 Hardware dependencies. Any GPU with the com-
pute capability of no less than 3.0

A.3.3 Software dependencies. Generally speaking, the
dependencies which mainly come from the official reference
of various tools we used can satisfy the basic operating en-
vironment, but in order to meet the operating environment
better, we also recommend the environment version we are
using.

g++ ≥ 5 (tested 9.3)
CMAKE ≥ 3.5 (tested 3.19.1)
LLVM ≥ 4 (tested 8.0)
CUDA toolkit ≥ 8
Python ≥ 3.6 (tested 3.8)
cuDNN 7.0.3

A.4 Installation
After installed the gcc, LLVM and CUDA toolkit. Run the

following command to install the fundamental dependencies:
apt-get install -y python3 python3-dev python3-setuptools

gcc libtinfo-dev zlib1g-dev build-essential cmake libedit-dev
libxml2-dev
Then, type the command to install the python dependencies:

pip3 install --user typed_ast numpy decorator tornado
psutil xgboost attrs

After the dependencies are set up, unpack the source code
to the server. Then the following script in source code is
helpful for configuring the experimental environment:

./install.sh

A.5 Experiment workflow
For the convenience of the artifact evaluation, we provide a
series of shell scripts which run the different tests we have
described in the paper and print the result after parsing on

screen. After the artifact is properly installed, the experi-
ments can be run as follows.

1. Enter the test directory:
cd $Testdir/test/

2. Using scripts to run tests, the file test_all.py contains
different test located in test_src/scripts . To run different test,
using the command as follows:

python3 test_all.py --options=[param]
Corresponding to the data of the paper, there are the fol-

lowing options for param:
Figure 8: paper or paper_all
Figure 9: batch or batch_all
Figure 11: end2end or end2end_all
Figure 12: multi_platform
Table 2: comp or comp_all

Different options call different test scripts. For paper* and
batch*, they call the test_1.py and test_2.py in test_src/scripts.
For end2end*, the end2end.py in test_src/cfg4paper is called.
As for comp*, it calls both test_*.py and test_original_*.py
located in test_src/scripts as well as multi_platform does. Af-
ter these python files are called, the template in cfg4paper
directory will be used. As for the test of other arbitrary pa-
rameters, we also provide a customization way in the section
A.7.

A.6 Evaluation and expected results
For options without the all tag, the expected results are the
minimized outputs of the corresponding figure with time
(only one set of parameters for each figure).

For options with the all tag, the expected results are the
full tests of the corresponding figure with time. (Throughput
metrics are also included.)

A.7 Experiment customization
For customizing the tests with specific parameters, the test_1.py
or test_2.py which located in test_src/scripts is useful. The
tests can be run with the parameters -N [batch size]-H [input
height] -W [input width] -CO [output channel] -CI [input chan-
nel] -KH [kernel height] -KW [kernel width] -strides [strides]
-padding [padding]. They provide an entrance to call the tem-
plate implemented with the aid of theory located in tvm/topi.
If you want to test the end to end results with customization,
the test_src/cfg4paper/end2end.py provides the entrance to
call the tuning process which the templates are implemented
through the theory.
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