
High-Performance Genomic Analysis Framework
with In-Memory Computing
Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun

∗State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
†University of Chinese Academy of Sciences
{lixueqi,tgm,wangbinchen,snh}@ncic.ac.cn

Abstract
In this paper, we propose an in-memory computing frame-
work (called GPF) that provides a set of genomic formats,
APIs and a fast genomic engine for large-scale genomic data
processing. Our GPF comprises two main components: (1)
scalable genomic data formats and API. (2) an advanced exe-
cution engine that supports efficient compression of genomic
data and eliminates redundancies in the execution engine
of our GPF. We further present both system and algorithm-
specific implementations for users to build genomic anal-
ysis pipeline without any acquaintance of Spark parallel
programming. To test the performance of GPF, we built a
WGS pipeline on top of our GPF as a test case. Our exper-
imental data indicate that GPF completes Whole-Genome-
Sequencing (WGS) analysis of 146.9G bases Human Platinum
Genome in running time of 24 minutes, with over 50% paral-
lel efficiency when used on 2048 CPU cores. Together, our
GPF framework provides a fast and general engine for large-
scale genomic data processing which supports in-memory
computing.

CCSConcepts •Applied computing→Computational
genomics; • Software and its engineering→ Distributed
systems organizing principles;

Keywords High-Performance Computing, Genomic Anal-
ysis Framework, In-memory Computing

ACM Reference Format:
Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun. 2018.
High-Performance Genomic Analysis Framework with In-Memory
Computing. In PPoPP ’18: Principles and Practice of Parallel Program-
ming, February 24–28, 2018, Vienna, Austria. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3178487.3178511

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’18, February 24–28, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00
https://doi.org/10.1145/3178487.3178511

1 Introduction
Precision medicine is a global initiative aimed at using a
patient’s genomic information to identify and treat cancer.
For example, precision medicine allows identification of so-
matic gene variants that act as drivers for new mutations
in cancer tissue [6], and allows monitoring of gene expres-
sion changes during cancer progression or response to ther-
apy [25]. Progress in precision medicine is driven by rapidly
dropping sequencing costs and the ability to obtain valuable
information about the entire human genetic code using next-
generation sequencing (NGS) technology [21]. Currently, ge-
nomic data are acquired at high quality and high-throughput
with the cost of 1, 000 dollar per genome via HiSeqX [7],
it is estimated that in the near future it should be possible
to sequence entire genome at a cost of less than 100 using
NovaSeq technology [8]. Due to an exponential increase in
genomic data volume, the bottleneck is now changing from
sequencing cost to computational power and storage require-
ment [11]. The growing genomic data is critically dependent
on large-scale computing infrastructure. However, existing
bioinformatics tools run in parallel on a single computer but
are not designed to scale to clusters. Scaling-out genomic
computing system faces two crucial challenges:

• The expected surge of human genomic data will result
in serious I/O problems during data analysis. As intro-
duced in the next section, genomic analysis consists of
a series of steps, all of which are combined as a pipeline.
Every two consecutive steps are connected by interme-
diate data, which are usually stored as disk files. For
example, in the whole-genome sequencing method,
read mapping consumes read samples in FASTQ for-
mat and produces aligned data in SAM/BAM format.
The subsequent steps include sorting, indexing, dupli-
cate marking and variant calling. These applications
manipulate the SAM/BAM files, which are often much
larger than the input data size. In fact, this type of data
manipulation involves massive I/O operations. In a
cluster machine connected with InfiniBand network,
we ran a WGS pipeline to process 100Gb+ data while
scaling the number of samples from 1 to 30. Table 1
shows that I/O time occupies more than 60% of the
total running time in the case of processing multiple
samples on larger-scale machines in both Lustre and

317

https://doi.org/10.1145/3178487.3178511
https://doi.org/10.1145/3178487.3178511

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun

Table 1. Timing results for scaling from 1 to 30 samples on
both Lustre and NFS file systems

I/O Percent CPU Percent
1 sample 96 cores Lustre 29% 71%
1 sample 96 cores NFS 25% 75%
30 samples 480 cores Lustre 60% ↑ 40%
30 samples 480 cores NFS 74% ↑ 26%

NFS file systems. This bottleneck indicates that perfor-
mance will be greatly reduced when scaling to larger
systems if the I/O problem is not resolved.
• Current de facto genomic data formats and process-
ing pipelines were not designed to support in-memory
computing. Recently, rewritting programs using in-
memory computing model has been proposed as a
potential solution to I/O bottleneck in many big data
applications [27]. Previous studies focused on optimiz-
ing individual genomic applications via parallelism on
single multicore machines [28] or multi-node scale-out
computing systems [3, 10, 12, 14]. On the one hand,
many of these parallelization approaches rely upon
on frameworks like Hadoop MapReduce [5]. How-
ever, these frameworks lack abstraction for leverag-
ing distributed memory, rendering them inefficient for
pipelines that reuse intermediate results across differ-
ent steps. On the other hand, studies that parallelize
genomics data analysis applications using in-memory
computing model showed an advantage over on Ama-
zon cluster system [18, 23]. However, it only provides
an incomplete framework used to improve several sin-
gle modules instead of the entire pipeline.

Here, we propose a new genomic programming frame-
work (GPF) that represents a high-performance, scalable,
in-memory framework and supports in-memory genomic
data format. The GPF has an advanced execution engine
and a set of APIs, and complete processing stage implemen-
tations that support in-memory computing for large-scale
genomic processing. More specifically, we make the follow-
ing contributions:

• We develop a genomic programming framework (GPF)
that can be used to build personalized genomic ana-
lytics pipelines. Genomic data format of GPF allows
to use in-memory computing for standard data struc-
tures used for genomic analysis. Also, GPF abstracts
the whole genomic analysis pipeline into three phases:
Aligner, Cleaner, and Caller. It also provides in-
memory computing programming interfaces.

• We build a fast and advanced execution engine to run
genomic processing pipeline efficiently across large-
scale cluster. The execution engine eliminates redun-
dancy operations in the pipeline and stores large ge-
nomic object in serialized form.
• We evaluate our framework through building a WGS
pipeline on top of GPF and demonstrate that GPF
achieve parallel efficiencies of more than 50% on a
2048-cores cluster system. We find that system I/O is
not the performance factor in terms of GPF. The fact
indicates that scale-out parallel system can be built for
large-scale genomic applications.

GPF is freely available: https://github.com/fhyxz/GPF.git. This
paper is organized as follows: Section 2 provides background
information on genomic analytics pipelines. Section 3 ex-
plains the APIs of the GPF, and Section 4 describes the exe-
cution engine of GPF. Section 5 evaluates our solution on a
2048 cores compute cluster and analyzes the most important
factors to the performance of our GPF. Finally, we discuss
related work in Section 6 before concluding in Section 7.

2 Background
Genomic analysis is the process during which sequencing
data are processed into biological or clinical knowledge.
For example, NGS-based cancer sequencing methods en-
able researchers to detect rare somatic variants (e.g., single-
nucleotide variants (SNVs), insertion-deletion (indels), struc-
tural variants (SVs), and copy number variants (CNVs) to a
specific tumor sample.

2.1 WGS Pipeline
Whole-genome sequencing using NGS technology is the
most comprehensive method for analyzing genome. WGS
processing consists of a number of steps, namely: read align-
ment application, sorting, and variant calling. Through in-
vestigating the WGS pipelines, we abstract the main compu-
tational applications into three phases as shown in Figure 1:
(i) align reads to a reference genome (Aligner), (ii) manipu-
lating the read alignments by sorting/indexing and eliminat-
ing duplicates (Cleaner) and (iii) various variants detection
(Caller). The programming interfaces of in-memory com-
puting framework are derived from the abstraction at this
level.
• Aligner: This processing stage is referred to as short
readmapping, which determines the location in the ref-
erence genome to which each read maps. The aligner
employs a Burrows-Wheeler transform (BWT) algo-
rithm [15] to index genome sequences reads (FASTQ
files) to be aligned by reads. It executes the BWT-based
mapping tool (bwa-0.7.12) [16], and then generates raw
alignment records in SAM format [17].
• Cleaner: In order to improve accuracy of alignment
and variant calling, most pipelines deploy an optional

318

High-Performance Genomic Analysis Framework with In-Memory Computing PPoPP ’18

Caller Stage

Cleaner Stage

Aligner Stage

Illumina
HiSeq

RNAseq

Sort, Index,
MarkDuplicate

(Samtools/Picard)

Indel Realignment

Base Recalibration

HaplotypeCaller

SNP Indels

SAM -> Spark RDD

BWA-MEM

Alignment

filestack

per-sample

Sort, Index,
MarkDuplicate

Indel Realignment

Base Recalibration
(Samtools/Picard)

FASTQ
Files

BCL Files

BAM Files

aligned
BAM Files

C
al

le
r

Cleaned
BAM Files

HaplotypeCaller
VCF File

BAM Files

C
le

an
er

Al
ig

ne
r

Storage
Subsystem

Figure 1.WGS analysis pipeline.

intermediate processing stage called data cleaning. The
pipeline uses programs from either Picard (Picard-
1.119) [2] or SAMtools package (Samtools-1.3) [17],
including Mark Duplicate, Indel Realignment and
BaseRecalibration. For example, Mark Duplicate
marks reads with identical position and orientation,
since there exist duplicate reads are created during se-
quencing whenever the number of sample molecules
is too low.
• Caller: Once the sequencing data have been pre-proce
ssed as described above, the preceding steps are usually
followed by variant calling using statistical methods.
Common variant calling tools is: HaplotypeCaller in
GATK [20].

3 The Genomic Programming Model
In this section we first define two basic concepts – Process
and Resource (Sec 3.1), which are the abstract objects to
be instantiated in a specific analysis algorithm. We then
introduce the programming interfaces of GPF (Sec 3.2), and
lastly provide an example for how to construct a genomic
analytics pipeline using GPF APIs.

3.1 Process and Resource
To describe procedure and data dependency of genomic anal-
ysis pipelines, our genomic programming framework (GPF)
uses two terms – Process and Resource. Process defines
an execution instance which is involved in data input, data
processing, and data output. Resource is the abstraction of
data which are referred to as number, string, RDD and other
specified objects.
Figure 2 depicts the state machine of both Process and

Resource. A Resource changes its state between defined
and undefined. The former state denotes that the Resources
content has been filled and the latter is empty. A Process can
be scheduled to execute only if all of its dependent Resources
are defined. Importantly, Process goes through three states –

Blocked, Ready, and Running. The key idea behind the Ready
state is to perform a robust dependency analysis, so that
redundant shuffle operations can be efficiently eliminated
(See Section 4).

start

end
State Name

entry/action
do/activity
exit/action
event/action(arguments)

Stateaction

State Diagrams Concurrent States
State Name

State

State State

State

start

Input Resource

Undefined

Blocked Defined Ready Running End

Defined

Process

Output Resource

Blocked Ready Running

Input
Resource

Defined

Undefined

Set Resource
FinishIssue

Has Undefined
Input Resource

Has All
Input

Trigger

Set by other
Process

Output
Resource

Undefined

Defined

Figure 2. The state transition of Process and Resource.

3.2 Data Format and API
Our GPF consists of three genomic data formats for storing
different original reads from the sequencer (FASTQ format),
aligned-read after Aligner (SAM/BAM format), and the mu-
tation site information (VCF format). These data formats are
compatible with the most commonly used genomic formats,
SAM/BAM and VCF. We introduce a set of interfaces that
leverage Spark primitives to perform parallel operations so
that users are able to build a genomic analysis pipeline with-
out first learning Spark parallel programming. Users only
need to define instances of both Process and Resource ac-
cording to the sequential analysis algorithm. In this part, we
provide definitions for the data representations and brief
introduction to the APIs.
// Set up environment for Process and Resource
val sc = new SparkContext(conf)
val pipeline = Pipeline("myPipeline",sc)

// Load pair-end FASTQ to RDD
val fastqPath1 = "…/1.fastq"
val fastqPath2 = "…/2.fastq"

val fastqPairRdd = FileLoader.loadFastqPairToRdd(sc, fastqPath1, fastqPath2)
val fastqPairBundle = FASTQPairBundle.defined("fastqPair", fastqPairRdd)

// Add Aligner Process into the Pipeline
val alignedSAMBundle = SAMBundle.undefined("alignedSam", new SamHeaderInfo.unsortedHeader())
val mappingProcess = BwaMemProcess.pairEnd("MyBwaMapping", reference, fastqPairBundle, alignedSAMBundle)
pipeline.addProcess(mappingProcess)

// Add Cleaner Process into the Pipeline
val dedupedSamBundle = SAMBundle.undefined("dedupedSam", new SamHeaderInfo.unsortedHeader())
markDuplicateProcess = MarkDuplicateProcess("MyMarkDuplicate", alignedSAMBundle, dedupedSamBundle)
pipeline.addProcess(markDuplicateProcess)

// Add Caller Process into the Pipeline
val vcfBundle = VCFBundle.undefined("ResultVCF", VcfHeaderInfo.newHeader(refContigInfo, List()))
val rodMapCall = Map(RODNames.DBSNP -> dbsnp)
val useGVCF = True
val haplotypeCallerProcess = HaplotypeCallerProcess("MyHaplotypeCaller", reference, rodMapCall,
repartitionInfoBundle, List(recaledSamBundle), vcfBundle, useGVCF)
pipeline.addProcess(haplotypeCallerProcess)

// Issue and Execute Processes
pipeline.run()

Figure 3. An example of GPF user programming.

In the GPF programming framework, all RDDs are rep-
resented as Resources. Different from other studies using
new data formats (i.e., column-wise) [3, 19], our GPF di-
rectly converts the original structure of FASTQ, SAM, and

319

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun

Table 2. Programming interfaces for runtime system and process in Scala language. The suffix of Bundle represent the
corresponding RDD format.

Process Name Description
Runtime System

Pipeline(val name: String, sc: SparkContext) pipeline constructor
addProcess(process: Process) add Process to construct an execution DAG

run() schedule Process to execution in parallel
Process in Aligner Stage

BwaMemProcess.pairEnd(name:String, referencePath: String, inputFASTQPairBundle: FASTQPairBundle,
outputSAMBundle: SAMBundle) map reads to reference genome using BWT algorithm.

Process in Cleaner Stage
Mark DuplicateProcess(name:String, inputSAMBundle: SAMBundle, outputSAMBundle: SAMBundle) remove redundant alignments.

IndelRealignProcess(name:String, referencePath:String, rodMap:Map(name:String, path:String),
partitionInfoBundle: PartitionInfoBundle, inputSAMList:List(SAMBundle),

outputSAMList:List(SAMBundle))
adjust alignment in particular position

BaseRecalibrationProcess(name:String, referencePath:String,
rodMap:Map(name:String, path:String), partitionInfoBundle: PartitionInfoBundle,

inputSAMList:List(SAMBundle), outputSAMList:List(SAMBundle))
adjusting quality scores

Process in Caller Stage
HaplotypeCallerProcess(name:String, referencePath:String, rodMap:Map(name:String, path:String),

partitionInfoBundle: PartitionInfoBundle, inputSAMList:List(SAMBundle),
outputVCFBundle:VCFBundle, useGVCF:Boolean)

calling variants via local de-novo assembly of haplotypes
in an active region based on paired-HMM algorithm.

Auxiliary Process
ReadRepartitioner(name:String, inputSAMBundleList: List(SAMBundle),

outputPartitionInfo: PartitionInfoBundle, refernceLength:List(Int),advisedPartitionLength:Int) generate partitioned RDD files for different formats

VCF into the RDD format. In order to achieve good scal-
ability performance, we use an auxiliary PartitionInfo
RDD that records the mapping of reference/read positions to
partitioned regions. A ReadRepartitioner function (which
is referred to as partition Process) is used to generate a
PartitionInfo RDD. The advantage of data format of GPF
is that it eliminates the step of format transformation while
simultaneously generating scalable RDD partition on-the-fly.
Two types of programming interfaces are used to con-

struct a pipeline. The first type represents runtime system
interfaces that manage the execution engine (Section 4). First,
users call the constructor to set up the execution environ-
ment with Spark context. Next, each Process is added to
a dynamic DAG one-by-one according to the analysis algo-
rithm. The run() function is issued to parse and execute all
Processes in parallel. The second type algorithm-specific
interfaces, which are instantiated as Processes in pipelines.
The internal implementation of these Processes will be de-
scribed in Section 4.4. The major functions APIs are summa-
rized in Table 2.
Figure 3 shows an example of user programming on top

of GPF framework. Users do not need to handle the paral-
lelism required for either data distribution or parallel prim-
itive operations in Spark. According to GPF programming
model, users instantiate both Process and Resource. In
this simple example, the Resources include the instances
of FASTQPairBundle, SAMBundle, VCFBundle. For the
pipeline of Aligner-Cleaner-Caller, users then create the
corresponding Processes and add them into the runtime sys-
tem driver Pipeline, which is finally issued and scheduled
to Spark execution.

4 Execution Engine
4.1 Overview
We design our engine on top of the Spark framework, which
by default keeps persistent RDDs in memory. Given the
considerable volume of genomic dataset, it is usually not
sufficient to fit the data in the memory. Thus, decreasing
memory usage via data serialization and reducing shuffle
operations are two main options to build a fast and efficient
engine for large-scale genomic dataset. Our GPF engine com-
prises two main components: genomic data compression and
a DAG scheduler. The compression method aims to persist
data in the serialized form used for shuffling data between
worker nodes as well as when serializing RDDs to disk. As
a consequence, the volume of shuffle data will reduce, and
network performance will be greatly improved. The DAG
scheduler analyzes the dependency between two Processes
and construct the DAG execution order that eliminates of
shuffle operations caused by redundancy computation at the
Process-level.

4.2 Genomic Data Compression
The genomic data compression of our GPF is designed to
reduce memory usage. The in-memory computing model
requires that all of the data processed are located in the mem-
ory. In the process of processing genetic data, the input data
and the intermediate data are large, which require a large
amount of memory, and generate the overhead of garbage
collection. Moreover, in the case of poor cluster network
environment, shuffling large volume datasets will turn data
transmission between nodes into a system bottleneck.

320

High-Performance Genomic Analysis Framework with In-Memory Computing PPoPP ’18

A more effective way to reduce memory usage is to store
objects in serialized form. Our GPF stores each RDD partition
as one large byte array. The original Spark programming
model provides two serialization libraries: Java serialization
and Kryo serialization [27]. Kyro is significantly faster and
more compact than Java serialization (often as much as 10x).
However, when shuffling RDDs with complex objects or
string types, the Kryo compression algorithm becomes in-
efficient. To overcome this bottleneck, we introduce a new
data compression method. Genomic applications commonly
include FASTQ, SAM, and VCF data format, in which VCF
consists of the small volume result file. In our framework, we
define the data structures that store FASTQ records and SAM
records, and their fields correspond to the FASTQ and SAM
file formats. Based on the data structure, we find that the
Sequence field and the Quality field account for 80% -90%
of the total length of FASTQ record. Thus, our GPF maintains
the original data structure and compress the Sequence field
and the Quality field respectively. Below, we introduce the
compression algorithm in the execution engine.

mapping from location to partitionID using partitioninfo (

Length of each Partition: 1,000,000 bp
Number of partitions contained in each contig
250 244 199 192 181 172 160 …

The starting number of the partition contained in
each contig

0 250 494 693 885 1066 1238 …

Partition ID of Position(4,12345678)

Segment Base Address 693

Segment Offset: 12345678 / 1000000 = 12
Partition ID: 693 +12 = 705

mapping from location to partitionID using partitioninfo ()

Length of each Partition: 1,000,000 bp
Number of partitions contained in each contig
250 244 199 192 181 172 160 …

The starting number of the partition contained in each
contig

0 250 494 693 885 1066 1238 …

Partition Split Table
Partition ID Split Count Start ID

705 4 3510

801 5 3513

Partition ID of Position(4,12345678) = 705 (original)
Look up the Split Table, Split Count = 4; Start ID = 3510
Length of Partition after split: 1000000 / 4 = 250000
Offset in the Split: 345678 / 250000 = 1
Final Partition ID: 3510 + 1 = 3511

Encoding: A:00 G:01 C:10 T:11
Sequence: GGTTNCCTA

Quality Score: CCCB#FFFF
Sequence Conversion: GGTTACCTA

Quality Score Conversion: CCCB(SOH)FFFF
Binary Sequence: (00001001) 01011111 00101011 00(000000)

Length of
Sequence

Compressed Binary
Sequence

Complemen
tation

Quality Score: CCCB#FFFF
Quality Score Conversion: CCCB(SOH)FFFF

Difference Sequence: 67 0 0 -1 -65 -69 0 0 0
Binary Sequence 110110101110110101110110010101(EOF)

SparkSeq (M���	�Process[;��
RepartitionInfoProducer[
	�Process 3)�	�
SAMRecord NK��RDD �V'[2C��RS�
�:L0W�PartitionInfoZ�

����P��PartitionInfo �:[6�Process >@C
�T75UA��interval ��PartitionInfo 0W[9�
6�PartitionInfo #�	.QXO�partition ID �J
&$H�+�4.5 �B��

 �	�partition (��read :-*�A�YF�
�![<,#��partition (�(�?S��[8
#64��interval 5UA��read :-/read 5U
F D[��#(partition ID, split count) /G�)
�:L0W([��A���S��I)��
partition IDZ1E���partition ID "%�,=+�
4.6 �B��

�1

Figure 4. sequence-compression

• Sequence Field Compression: The stored base se-
quence of a sequence field is composed of the 4 char-
acters A,G,C, and T. We use 2-bit encoding to express
the sequence. When encountering special characters
in an individual position in the sequence, we refer to
Deorowicz [4] method, which encodes special char-
acters into Quality Filed. For example, the quality
score of the sequence shown in Figure 4, the illegal
character N in the sequence field is 1, the compres-
sion algorithm first converts the character into A and
changes the corresponding quality score to 0. 1 At the
time of decompression, if the algorithm encounters the
character A whose quality score is 0, the algorithmwill
recognize that A is a special character in the particular
position before compression. In addition to the 2-bit
encoding of the base moiety, a byte is used to store the
length of the base sequence before compression. The
base sequence before and after compression is shown
in Figure 4. Our results show that our GPF improves
storage by approximately four times.

1the range of the mass score of normal Read is [33 -126].

හഝᵞSRR622461 4.12ࢶ
SRR504516ፘᮝᨶᰁړහԏ૧
ړ

Pe
rc

en
t

0

20

40

60

80

(b) Adjacent Quality Score Difference
-94 -82 -70 -58 -46 -34 -22 -10 2 14 26 38 50 62 74 86

SRR622461
SRR504516

Pe
rc

en
t

0
10
20
30
40
50
60
70
80

(a) Quality Score
33 38 42 46 50 54 58 62 66 70 74 78 82 86 90

SRR622461
SRR504516

හഝᵞSRR622461 4.11ࢶ
SRR504516ᨶᰁړහړ

Figure 5. quality-distribute

• Quality Field Compression: As shown in Figure 5,
the difference in the adjacent quality score of the differ-
ent samples is more concentrated and easier to predict
than the mass fraction itself. In addition, the vast ma-
jority of adjacent quality score differences are ranged
between 0-10. Based on this feature, we convert the
mass fraction sequence into the Delta sequence (the
character range becomes -127 127) of the difference
between the quality score, and then compress the delta
sequence using Huffman coding with the end symbol
of EOF (Figure 6).

mapping from location to partitionID using partitioninfo (

Length of each Partition: 1,000,000 bp
Number of partitions contained in each contig
250 244 199 192 181 172 160 …

The starting number of the partition contained in
each contig

0 250 494 693 885 1066 1238 …

Partition ID of Position(4,12345678)

Segment Base Address 693

Segment Offset: 12345678 / 1000000 = 12
Partition ID: 693 +12 = 705

mapping from location to partitionID using partitioninfo ()

Length of each Partition: 1,000,000 bp
Number of partitions contained in each contig
250 244 199 192 181 172 160 …

The starting number of the partition contained in each
contig

0 250 494 693 885 1066 1238 …

Partition Split Table
Partition ID Split Count Start ID

705 4 3510

801 5 3513

Partition ID of Position(4,12345678) = 705 (original)
Look up the Split Table, Split Count = 4; Start ID = 3510
Length of Partition after split: 1000000 / 4 = 250000
Offset in the Split: 345678 / 250000 = 1
Final Partition ID: 3510 + 1 = 3511

Encoding: A:00 G:01 C:10 T:11
Sequence: GGTTNCCTA

Quality Score: CCCB#FFFF
Sequence Conversion: GGTTACCTA

Quality Score Conversion: CCCB(SOH)FFFF
Binary Sequence: (00001001) 01011111 00101011 00(000000)

Length of
Sequence

Compressed Binary
Sequence

Complemen
tation

Quality Score: CCCB#FFFF
Quality Score Conversion: CCCB(SOH)FFFF

Difference Sequence: 67 0 0 -1 -65 -69 0 0 0
Binary Sequence 110110101110110101110110010101(EOF)

SparkSeq (M���	�Process[;��
RepartitionInfoProducer[
	�Process 3)�	�
SAMRecord NK��RDD �V'[2C��RS�
�:L0W�PartitionInfoZ�

����P��PartitionInfo �:[6�Process >@C
�T75UA��interval ��PartitionInfo 0W[9�
6�PartitionInfo #�	.QXO�partition ID �J
&$H�+�4.5 �B��

 �	�partition (��read :-*�A�YF�
�![<,#��partition (�(�?S��[8
#64��interval 5UA��read :-/read 5U
F D[��#(partition ID, split count) /G�)
�:L0W([��A���S��I)��
partition IDZ1E���partition ID "%�,=+�
4.6 �B��

�1

Figure 6. quality-compression

4.3 DAG Scheduler
After users construct a pipeline with the Spark-based APIs,
a driver function Pipeline.run() analyzes the pipeline be-
fore any committed operation. The novelty of our framework
is that the execution engine performs a unified analysis and
scheduling of the execution of each process, and then submit
the optimized execution order. Unlike the built-in RDD de-
pendency analysis of Spark, the dependency analysis of GPF
occurs at Process level, which reserves the execution char-
acteristics and algorithmic significance of each process. This
allows the framework to automatically change the execution
pattern of each Process.

321

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun

Process1

Process2

Process1

Process2SAM RDD

FlatMap to cleaned SAM records

FASTA
partition

Partition Bundle RDD

SAM
partition

VCF
partition

join

groupBy partition ID

FASTA partition RDD SAM partition RDD VCF partition RDD

FASTA contigs Known VCF RDD
groupBy partition ID groupBy partition ID

SAM RDD

FlatMap to cleaned SAM records

FASTA partition RDD SAM partition RDD VCF partition RDD

FASTA contigs SAM RDD Known VCF RDD

groupBy partition ID groupBy partition ID groupBy partition ID

FASTA
partition

Partition Bundle RDD

SAM
partition

VCF
partition

join

Map to Bundle RDD
with cleaned SAM

FASTA partition RDD SAM partition RDD VCF partition RDD

FASTA contigs SAM RDD Known VCF RDD

groupBy partition ID groupBy partition ID groupBy partition ID

FASTA
partition

Partition Bundle RDD

SAM
partition

VCF
partition

join

FASTA
partition

Partition Bundle RDD

SAM
partition

VCF
partition

Map to Bundle RDD
with cleaned SAM

FASTA
partition

Partition Bundle RDD

SAM
partition

VCF
partition

SAM RDD

FlatMap to cleaned SAM records

Redundant
Operation

(a) Before Optimization (b) After Optimization

Figure 7. An illustrative example of eliminating useless shuffle and duplicated computation.

The execution engine of our GPF is designed in such man-
ner that it builds the dependencies among processes accord-
ing to the references among different resources. The algo-
rithm 1 presents a pseudo-code of the DAG analysis. For
example, when the output of Process A uses the same ref-
erence as the input of Process B, B is dependent on A. If
Process is treated as a node and the dependency is as a
directed edge from one node to another, the entire pipeline
can be transformed into a DAG. The engine then performs a
topology sort on the DAG to generate a proper execution or-
der. It should be noted that the DAG may not be a connected
graph. Thus, it is necessary to iterate through the topology
until all processes have been executed.

Shuffle is an expensive operation since it involves disk I/O,
data serialization, and network I/O. Note that most of the
shuffle operations occur during partition Process, which
prepares RDDs of either FASTA or VCF for the next stage. We
observe that redundant partitions and joins exist that incur
a heavy cost of during network communication. Therefore,
the execution engine schedules several continuous partition
Processes to share the same operation. The runtime system
traverses DAG to identify a path where (i) each node is parti-
tion Process; (ii) out-degree of the start node is 1, in-degree
of the end node is 1, and both in-degree and out-degree of
each middle node are 1. In fact, this pattern often occurs
through different stages like Indel Realignment and Base
Recalibration and HaplotypeCaller. Figure 7 shows an

Algorithm 1 Generating execution order and detecting depen-
dencies to schedule execution
1: Set<Process> unfinishedProcess = allProcess
2: List<Process> finishedProcess = {}
3: List<Resource> resourcePool= {}
4: ▷ Add Resource which has been defeined
5: for each p in unfinishedProcess do
6: for each r in p.inputResourceList do
7: if each r isDefined then
8: resourcePool.add(r)
9: end if
10: end for
11: end for
12: while unfinishiedProcess is NotEmpty do
13: ▷ Find out process list which can be executed in this iteration
14: List<processToBeFinished> = {}
15: for each p in unifishedProcess do
16: if all input resource of the process in resource pool then
17: processToBeFinished.add(p)
18: end if
19: end for
20: ▷ None of the p can be executed
21: if processToBeF inishedisEmpty then
22: throw new Exception: Circular dependency
23: end if
24: for each p in processToBeFinished do
25: unfinishedProcess.remove(p)
26: finishedProcess.add(p)
27: for each r in process.outputResourceList do
28: resourcePool.addResource(r)
29: end for
30: end for
31: end while

322

High-Performance Genomic Analysis Framework with In-Memory Computing PPoPP ’18

example of eliminating the useless shuffles and duplicated
computations.
By default, Spark submits all operations that are defined

in the process (Figure 7(a)). Since FASTA and VCF are read-
only, Process 2 can reuse the FASTA partition RDD and VCF
partition RDD generated by Process 1. In addition, Process
1 merges the SAM results generated in each partition into a
SAM RDD, which will be re-partitioned in Process 2. In or-
der to aggregate several data in the form of bundled RDD, an
additional join operation is required. More specifically, the
execution engine parses DAGs and automatically changes
the execution mode of both Process 1 and Process 2 to be a
reduced task graph (Figure 7(b)). Process 1 uses a map oper-
ation to convert the bundled RDD to another bundled RDD,
which preserves the calculation results of FASTA, VCF, and
SAM in Process 1. Process 2 directly uses the bundle RDD
in the next step. Thus, time-consuming redundant operations,
such as FASTA, VCF partition, SAM data re-repartition, and
join, have been eliminated in our GPF before the tasks are
submitted to Spark runtime system.

4.4 RDD Partition
Ideally, sequencing reads are evenly distributed according
to the reference. Optimal parallelism should be achieved
by partitioning input data by loci for the entire workflow.
However, in the 50 sequencing coverage WGS dataset 2, it
is common that the depth of coverage of a targeted base
is beyond 10, 000x . Thus, with the uneven distribution of
coverage depth across the bases targeted in the genome,
simply partitioning input data into equal length will result
in load imbalance. As a result, some of the executors with
heavy tasks may collapse due to lack of memory resource.

mapping from location to partitionID using partitioninfo (

Length of each Partition: 1,000,000 bp
Number of partitions contained in each contig
250 244 199 192 181 172 160 …

The starting number of the partition contained in
each contig

0 250 494 693 885 1066 1238 …

Partition ID of Position(4,12345678)

Segment Base Address 693

Segment Offset: 12345678 / 1000000 = 12
Partition ID: 693 +12 = 705

mapping from location to partitionID using partitioninfo ()

Length of each Partition: 1,000,000 bp
Number of partitions contained in each contig
250 244 199 192 181 172 160 …

The starting number of the partition contained in each
contig

0 250 494 693 885 1066 1238 …

Partition Split Table
Partition ID Split Count Start ID

705 4 3510

801 5 3513

Partition ID of Position(4,12345678) = 705 (original)
Look up the Split Table, Split Count = 4; Start ID = 3510
Length of Partition after split: 1000000 / 4 = 250000
Offset in the Split: 345678 / 250000 = 1
Final Partition ID: 3510 + 1 = 3511

Encoding: A:00 G:01 C:10 T:11
Sequence: GGTTNCCTA

Quality Score: CCCB#FFFF
Sequence Conversion: GGTTACCTA

Quality Score Conversion: CCCB(SOH)FFFF
Binary Sequence: (00001001) 01011111 00101011 00(000000)

Length of
Sequence

Compressed Binary
Sequence

Complemen
tation

Quality Score: CCCB#FFFF
Quality Score Conversion: CCCB(SOH)FFFF

Difference Sequence: 67 0 0 -1 -65 -69 0 0 0
Binary Sequence 110110101110110101110110010101(EOF)

SparkSeq (M���	�Process[;��
RepartitionInfoProducer[
	�Process 3)�	�
SAMRecord NK��RDD �V'[2C��RS�
�:L0W�PartitionInfoZ�

����P��PartitionInfo �:[6�Process >@C
�T75UA��interval ��PartitionInfo 0W[9�
6�PartitionInfo #�	.QXO�partition ID �J
&$H�+�4.5 �B��

 �	�partition (��read :-*�A�YF�
�![<,#��partition (�(�?S��[8
#64��interval 5UA��read :-/read 5U
F D[��#(partition ID, split count) /G�)
�:L0W([��A���S��I)��
partition IDZ1E���partition ID "%�,=+�
4.6 �B��

�1

Figure 8.Mapping position into partition ID using Partition-
Info
To overcome the limitation of load imbalance, we have

designed our GPF in such manner that it balances the task dy-
namically, namely based on the number of reads in each parti-
tion. GPF integrates a Process named RepartitionInfoProd
ucer and generates PartitionInfo structure to describe
2Sequencing coverage describes the average number of reads that align to
known reference bases

mapping from location to partitionID using partitioninfo (

Length of each Partition: 1,000,000 bp
Number of partitions contained in each contig
250 244 199 192 181 172 160 …

The starting number of the partition contained in
each contig

0 250 494 693 885 1066 1238 …

Partition ID of Position(4,12345678)

Segment Base Address 693

Segment Offset: 12345678 / 1000000 = 12
Partition ID: 693 +12 = 705

mapping from location to partitionID using partitioninfo ()

Length of each Partition: 1,000,000 bp
Number of partitions contained in each contig
250 244 199 192 181 172 160 …

The starting number of the partition contained in each
contig

0 250 494 693 885 1066 1238 …

Partition Split Table
Partition ID Split Count Start ID

705 4 3510

801 5 3513

Partition ID of Position(4,12345678) = 705 (original)
Look up the Split Table, Split Count = 4; Start ID = 3510
Length of Partition after split: 1000000 / 4 = 250000
Offset in the Split: 345678 / 250000 = 1
Final Partition ID: 3510 + 1 = 3511

Encoding: A:00 G:01 C:10 T:11
Sequence: GGTTNCCTA

Quality Score: CCCB#FFFF
Sequence Conversion: GGTTACCTA

Quality Score Conversion: CCCB(SOH)FFFF
Binary Sequence: (00001001) 01011111 00101011 00(000000)

Length of
Sequence

Compressed Binary
Sequence

Complemen
tation

Quality Score: CCCB#FFFF
Quality Score Conversion: CCCB(SOH)FFFF

Difference Sequence: 67 0 0 -1 -65 -69 0 0 0
Binary Sequence 110110101110110101110110010101(EOF)

SparkSeq (M���	�Process[;��
RepartitionInfoProducer[
	�Process 3)�	�
SAMRecord NK��RDD �V'[2C��RS�
�:L0W�PartitionInfoZ�

����P��PartitionInfo �:[6�Process >@C
�T75UA��interval ��PartitionInfo 0W[9�
6�PartitionInfo #�	.QXO�partition ID �J
&$H�+�4.5 �B��

 �	�partition (��read :-*�A�YF�
�![<,#��partition (�(�?S��[8
#64��interval 5UA��read :-/read 5U
F D[��#(partition ID, split count) /G�)
�:L0W([��A���S��I)��
partition IDZ1E���partition ID "%�,=+�
4.6 �B��

�1

Figure 9. Using the PartitionInfo structure to map the
location to the partition ID

segmentation. Herewe take SAMRecord as a case to illustrate
the mechanism of the partition Process. The partition
Process uses a dynamic strategy consisting of three steps:
• As shown in Figure 8, at the beginning of converting
SAMRecord into subregions, RepartitionInfoProduc
er equally divides the dataset into multiple subregions
and generates the basic PartitionInfo. For an individ-
ual position (contig ID, position), we first identify the
start ID of the segment based on the contig ID. Second,
we obtain the offset value (position/length of parti-
tion). Finally, the sum of start ID and offset is the final
partition ID result.
• Second, broadcast variables are created from the struc-
ture containing the start ID of each contig by calling
SparkContext.broadcast(x). Tuple (partition id, 1) is cre-
ated using transformation operation from SAMRecord
RDD. Once created, reduce is performed to aggregate
all the elements of the RDD using collect() primitive
and returns the number of reads in each partition to
the driver program. The driver program will set a seg-
mentation threshold to cut the dataset.
• Finally, once the number of reads in a partition ex-
ceeds the segmentation threshold, the GPF will re-
partition the current partition. One important param-
eter for the new segment is the new partition ID.
Figure 9 shows a method to create the new partition
ID. For example, the old partition ID of targeted
base(4,12345678) is 705, we look up the partition split
table to find whether this partition has been split. If it
is not split, the new partition ID is still 3510, while
we find this partition was split into 4 segments. Then
we calculate the length of new partition and the offset
to generate the final new partition ID 3511.

323

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun

5 Evaluation
This section reviews the speed, ease of use, scalability of
our GPF. We built a typical WGS pipeline on top of GPF
and evaluated our framework through experiments on large-
scale clusters.

5.1 Experimental Setup and Data Sets
We use an in-memory computing environment of Apache
Spark version 2.1.0. The Spark cluster was configuredwith up
to 2048 cores, each with two Intel Xeon E5-2692v2 12-cores
CPU chips at 2.2GHz and 64 GBytes of DRAM. Each node
consists of 1 Seagate St9 1000640NS SATA disk (1TB, 7200
RPM). The total 240 nodes are connected by Infiniband FDR.
Due to the limit of memory capacity per node for launching
Spark tasks, we use up to 10 cores on each node.

In all our experiments, we use paired-end genome dataset
NA12878_PlatinumGenomes from IlluminaHiSeq 2000, which
consists of 146.9G bases, and is 500 GB in FASTQ format.3
The known variant database used for count covariates stage
is dbsnp_138.b37. We selected hg19 human genome [1] as
the reference genome to which we aligned the dataset.

We evaluated GPF in terms of both performance and scal-
ability by comparing several the state-of-the-art genomic
data analysis softwares. Especially, we compared our GPF
with three representative tools or frameworks:

• Churchill [12]: It is the few counterparts that imple-
ments a full pipeline parallelization in WGS pipeline.
Since [12] has demonstrated that both HugeSeq [14]
and GATK-Queue [10] showed modest improvements
in speed between 8 and 24 cores (2-fold), with a maxi-
mal 3-fold speedup being achieved with 48 cores, and
no additional increase in speed beyond 48 cores. We
compared the performance of GPF with Churchill for
cluster scalability of the whole pipeline.
• ADAM [19]: ADAM and GATK4 [9] present imple-
mentations on top of Spark and improve performance
through in-memory caching and reducing disk I/O.
However, only partial applications like Mark Duplicate,
BQSR, and INDEL Realignment are available in ADAM.
The current GATK4 is released as a beta version, imple-
mentations have not yet been fully validated for cor-
rectness nor has their performance been fully known.
We compared the performance of typical GPF applica-
tions with ADAM and GATK4.
• Persona [3]: Different from either Hadoop or Spark in-
memory computing model, Persona is a more general
framework that leverages TensorFlow as a dataflow
execution engine. Like ADAM, the framework only
supports algorithms in either Aligner or Cleaner.

3The sequenced reads are stored as ASCII strings (roughly 100 characters
each).

5.2 Performance Evaluation
5.2.1 Cluster Scalability
GPF can scale out to reduce the time for sequencing data
analysis by distributing computation across a cluster. Thus,
cluster performance is critical. Due to the limited of memory
capacity per node4, we measured scalability starting from
128 cores. As shown in Figure 10, our GPF-based pipeline
achieved more than 50% parallel efficiency over 2048 cores
and finished WGS analysis in 24 minutes on the NA12828
high-coverage human genome. We found that the parallel
efficiency and the number of cores were much higher than
those of previous studies whose parallel efficiency was ap-
proximately 15% on tens to hundreds of cores [10, 12, 14,
18, 19]. As a result, Churchill enables the whole analysis to
be completed in 128 minutes with 1024 cores. Due to the
chromosomal subregion is decided at the beginning of the
analysis and the inherent load imbalance of the strategy
mentioned in Sec 4.4, the scalability of Churchill was limited
to 1024 cores. Our GPF overcame the bottleneck through
in-memory caching and by reducing the disk I/O and by
using the dynamic repartition mechanism. As a result, our
GPF performed about three times faster than Churchill.

CPU໐හ Churchill GPF Churchill Speedup GPF Speedup GPFፘChurchill linear Speedup

128 320 174 1 1 1.83908045977011 1

256 210 96 1.52380952380952 1.81 2.1875 2

512 150 57 2.13333333333333 3.05 2.63157894736842 4
1024 128 37 2.5 4.7 3.45945945945946 8

2048 0 24 7.25 0 16

CPU໐හ ᭛ྲے ᭛ྲے ቘమے᭛ྲ

128 174 1 1
256 96 1.81 2
512 57 3.05 4
1024 37 4.7 8
2048 24 7.25 16

Sp
ee

du
p

0

2

4

6

8

Ti
m

e
(in

 m
in

ut
es

)

0

100

200

300

400

Number of Cores
128 256 512 1024 2048

Churchill
GPF
Churchill Speedup
GPF Speedup

0

100

200

300

400

128 256 512

45
60

87.5

70
82.5

107.5

37.567.5
125

Churchill-Aligner
Churchill-Cleaner
Churchill-Caller

CPU໐හ

128
256
512
1024
2048

CPU໐හ

CPU໐හ Churchill_bwa cleaner caller Churchill (50x) Churchill (50x) min

128 1.25 1.075 0.875 2.08333333333333 125
256 0.675 0.825 0.6 1.125 67.5
512 0.375 0.7 0.45 0.625 37.5
1024
2048

CPU໐හ pix Churchill_bwa cleaner caller Churchill (50x) Churchill (50x) min

128 160 - 4h 160 50 43 35
256 160 27 33 24
512 160 15 28 18
1024 160
2048

CPU໐හ Churchill_bwa Churchill-Aligner cleaner Churchill-Cleaner caller Churchill-Caller Churchill (50x) Churchill (50x) min

128 2.08333333333333 125 1.79166666666667 107.5 1.45833333333333 87.5 320
256 1.125 67.5 1.375 82.5 1 60 210

512 0.625 37.5 1.16666666666667 70 0.75 45 152.5

1024
2048

128 125
256 67.5
512 33

Table 1

Total GPF Mark Duplicate ADAM Mark Duplicate GATK Mark Duplicate GPF BQSR ADAM BQSR GATK BQSR GPF INDEL
Realignment

ADAM INDEL
Realignment

GPF sum GPFྲADAM
Mark Duplicate

GPFྲADAM
BQSR

128 45m40s = 2740s
ӧᓒBQSR Collect
42m50s = 2570s 
BQSRӤکےӥ170sۃ

618.449197860962 4500 4000 1200.7486631016 7500 10000 920.802139037433 6700 2740 45.6666666666667 7.27626459143969 6.24610314420593

256 341.684639702189 2000 1750 663.39705143735 4800 6400 508.730463556593 3600 1513.81215469613 25.2302025782689 5.85335062689148 7.23548588224815

512 15m20s = 920s
ӧᓒBQSR Collect
13m30s = 810s 
BQSRӤکےӥ110sۃ

147.810218978102 1250 1000 476.569343065693 3100 4000 295.620437956204 2500 920 15.3333333333333 8.45679012345679 6.50482462858018

1024 10m20s = 620s
ӧᓒBQSR Collect
8m50s = 530s 
BQSRӤکےӥ90sۃ

99.1271820448878 750 625 354.339152119701 2000 3000 166.533665835411 1260 620 10.3333333333333 7.56603773584906 5.64430994440144

check check check check check 7.28811076940926 6.40768089985893

128 10:54:20-11:37:30-11:40:00

256

512 05:31:05-05:44:35-05:46:25

1024 03:44:00-03:52:50-03:54:20
03:47:20 ᬯӞྦྷฎړڔᳵ

6850 114.166666666667

0

12.5

25

37.5

50

128 256 512 1024

10.333

15.333

25.23

45.667

ᬯӻฎՔภጱ౮ຎ҅ᶉӧӥஞԧ

Sp
ee

du
p

0

2

4

6

8

Ti
m

e
(in

 m
in

ut
es

)

0

100

200

300

400

Number of Cores
128 256 512 1024 2048

Churchill
GPF
Churchill Speedup
GPF Speedup

�1

Figure 10. Execution time and scalability with the increasing
number of cores.

5.2.2 Comparison with In-memory Programming
Approaches

To test the efficiency of GPF with the current implementa-
tions that are used in ADAM and GATK4, we ran strong scal-
ing experiments for the different steps of the pipeline. In this
experiment, we use the high coverage genome NA12878 ge-
nomic dataset.We hold the executor configuration as detailed
in Sec 5.1. Figure 11 compare these results to the ADAM and
GATK4 respectively. In general, implementations of various
algorithms in the pipeline were more efficient and effec-
tive than the same algorithms implemented in the ADAM
and GATK. GPF outperformed the ADAM when running
Mark Duplicate (7.3x speedup), INDEL realignment (7.6x

464GB RAM in each node is beyond the actual capacity requirement of
caching intermediate data with more than 10 cores

324

High-Performance Genomic Analysis Framework with In-Memory Computing PPoPP ’18
Ti

m
e

(in
 s

ec
on

ds
)

1400

2800

4200

5600

7000

Number of Cores
128 256 512 1024

GPF Mark Duplicate
ADAM Mark Duplicate
GATK Mark Duplicate
Persona Mark Duplicate

Table 1

Total GPF Mark Duplicate ADAM Mark Duplicate GATK Mark Duplicate GPF BQSR ADAM BQSR GATK BQSR GPF INDEL
Realignment

ADAM INDEL
Realignment

GPF sum GPFྲADAM
Mark Duplicate

GPFྲADAM
BQSR

GPFྲADAM
INDEL

ADAMྲGATK
Mark Duplicate

128 45m40s = 2740s
ӧᓒBQSR Collect
42m50s = 2570s 
BQSRӤکےӥ170sۃ

618.449197860962 4500 4000 1200.7486631016 7500 10000 920.802139037433 6700 7.27626459143969 6.24610314420593 7.27626459143969 1.125

256 341.684639702189 2000 1750 663.39705143735 4800 6400 508.730463556593 3600 5.85335062689148 7.23548588224815 7.07643881758523 1.14285714285714

512 15m20s = 920s
ӧᓒBQSR Collect
13m30s = 810s 
BQSRӤکےӥ110sۃ

147.810218978102 1250 1000 476.569343065693 3100 4000 295.620437956204 2500 920 8.45679012345679 6.50482462858018 8.45679012345679 1.25

1024 10m20s = 620s
ӧᓒBQSR Collect
8m50s = 530s 
BQSRӤکےӥ90sۃ

99.1271820448878 750 625 354.339152119701 2000 3000 166.533665835411 1260 620 7.56603773584906 5.64430994440144 7.56603773584906 1.2

check check check check check 7.28811076940926 6.40768089985893 7.59388281708269

128 10:54:20-11:37:30-11:40:00

256

512 05:31:05-05:44:35-05:46:25

1024 03:44:00-03:52:50-03:54:20
03:47:20 ᬯӞྦྷฎړڔᳵ

6850 114.166666666667

Ti
m

e
(in

 s
ec

on
ds

)

2500

5000

7500

10000

Number of Cores
128 256 512 1024

GPF BQSR
ADAM BQSR
GATK BQSR

Ti
m

e
(in

 s
ec

on
ds

)

1000

2000

3000

4000

5000

6000

7000

Number of Cores
128 256 512 1024

GPF INDEL Realignment
ADAM INDEL Realignment

(b) The aggregated disk throughput

(b) Base Recalibration Speedup (c) INDEL Realignment Speedup(a) Mark Duplicate Speedup

Table 1-1

GPFፘADAM GPFፘGATK4

128 6.82481751824818 ဌဩᓒ

256 6.87007299270073

512 7.44565217391304

1024 6.46774193548387 6.30503144654088

8.46646491660215

Table 1-1-1

24 GPF BWA time GPF BWA Persona SNAP Persona BWA FASTQ->AGD, AGD->BAM
ᳵ (430GB FASTQ, 125GB
BAM)

Persona BWAྲᳵ ᓒӤහഝ۸ᳵጱᳵ Persona real BWA

128 5.33333333333333 4000 0.0624325 0.23 0.0469387755102041 2784.08672086721 479.837826086957 3263.92454695417 0.00690058844069115

256 10.6666666666667 2000 0.124865 0.42 0.0857142857142857 2784.08672086721 262.768333333333 3046.85505420054 0.00739221249430579

512 21.3333333333333 1205 0.207244813278008 0.88 0.179591836734694 2784.08672086721 125.412159090909 2909.49887995812 0.00774119562483702

768 32 1.32 0.269387755102041 2784.08672086721 83.6081060606061 2867.69482692782 0.00785404352949546

30/64 * 0.5
54/64 * 0.5
110/64 * 0.5

SNAP/BWA
263/54

128: 09:43:55-10:52:25
70min
512: 05:09:15-05:30:20
21min5s

G
ig

ab
as

es
 A

lig
ne

d
/ S

ec
on

d

0.129

0.257

0.386

0.514

0.643

0.771

0.9

Number of Cores
128 256 512

GPF BWA
Persona BWA
Persona SNAP
Persona real BWA

223 million single-end 101-base reads, and is 18 GB in gzipped-FASTQ format and 16 GB
in AGD format

-��

360

82

It can align a 223 million read dataset in ⇠16.7 seconds

1.353 gigabases per second 768Z(

Table 2

GPF BWA (single-
end)

Persona BWA Persona SNAP Persona real BWA Persona Mark
Duplicate

128 0.0624325 0.0469387755102041 0.23 0.004981143997952226386.95652173913000000

256 0.124865 0.0857142857142857 0.42 0.007251736698111853497.61904761905000000

512 0.207244813278008 0.179591836734694 0.88 0.01019135996875071669.31818181818000000

1.32 1112.87878787879000000

G
ig

ab
as

es
 A

lig
ne

d
/ S

ec
on

d

0.0
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.3
0.3

Number of Cores
128 256 512

GPF BWA
Persona BWA
Persona real BWA

(d) Aligner Comparisons

�1

Figure 11. Strong scaling characteristics of GPF. GPF outperforms the ADAM when running equivalent implementations
of BQSR (6.4x speedup), Mark Duplicate (7.3x speedup), and INDEL realignment (7.6x speedup). Further, GPF outperforms
GATK4 6.3x speedup when running Mark Duplicate and 8.4x speedup with BQSR.

speedup), and BQSR (6.4x speedup). Compared with the lat-
est implementation of these algorithms in the GATK4, GPF
performed 6.3x speedup to the GATK when running Mark
Duplicate and 8.4x speedup when running BQSR respec-
tively. The Collect action after BQSR introduced a serial
step that runs for several minutes, as the multiple gigabyte
mask table was broadcast to all of the nodes in the cluster,
which slowed the parallel efficiency of BQSR.

5.2.3 Comparison with Approaches Using Other
Framework

In addition to Hadoop MapReduce and in-memory comput-
ing distributed programming model, studies like Persona [3]
seek to embed genomic tools in dataflow framework like
Google TensorFlow, which inherently allows data partition-
ing and distribution across clusters. However, a direct perfor-
mance comparison of GPF and Persona is difficult. Persona
integrated SNAP [26] as a reader aligner for cluster scaling
implementation, and it used single-end reads. In the GPF, we
chose BWA to align paired-end reads because paired-end reads
lead to much better alignment results in terms of the biology.
Thus, we based the performance comparison on implemen-
tations that were available in the repository of Persona on
Github. We compared the performance of Persona-BWA and
duplicate marking to our GPF, whose algorithm we have
used in our implementations. Figure 11 (a) shows the results
when duplicating paired-end reads, our GPF can mark dupli-
cates up to 10 times faster than Persona. Figure 11 (d) shows
the alignment throughput of Persona and GPF as a compari-
son. Here we use half of a paired-end whole genome dataset
from NA12878. Figure 11 (d) reports the giga bases aligned
per second for a single genome. BWA in our GPF aligns the
genome with higher throughput than Persona-BWA. Besides,
when considering data format conversion time as mentioned
in Persona (FASTQ is imported to AGD data format in Per-
sona at 360 MB/s, while the alignment result (BAM format
files) are produced from AGD at 82 MB/s) [3]. Persona per-
formed WGS alignment for a typical dataset in 16.7 seconds.

Taking the platinum standard genome data as an example,
time of data format conversion is approximately 3300 sec-
onds, which is 200 times that of the alignment time. Thus,
Persona should take into account the conversion time, the
red line in Figure 11 (d) shows the alignment throughout of
Persona-BWA with the conversion time. Practically, the real
throughput of Persona-BWA was about 20 times lower than
BWA of GPF.

5.2.4 Specific Advantages Caused by Optimizations
The serialization and compression algorithm in the GPF is
significantly faster and more compact than Java serialization
and Kryo. Also, the novel execution engine enables elimi-
nates redundant operations to reduce data shuffle overhead.
We therefore studied the performance impact of data serial-
ization and shuffle operation here:

Effect of Genomic Data Compression: Table 3 shows
the effect of data compression. GPF reduces memory con-
sumption by 50% totally. Spark actions are executed through
a set of stages, separated by distributed shuffle operations.
We take three running stages as examples, which are used for
not only shuffling compressed data between worker nodes
but also to disk. Stage 1 has the best compression effect when
shuffling FASTQ RDDs. Dataset in Stage 1 is more compact
than in Stage 5 since SAM formats in Stage 5 have various
fields, and these fields are not compressed. When shuffling
RDDs with FASTA, SAM, and VCF formats in Stage 20, the
compression rate is slightly lower but the total compression
rate is essentially constant.

Table 3. Efficient compression of genomic data

Stage ID Describtion Orgin Compressed
1 Load FASTQ 20.0GB 11.1GB
5 Segment SAM 22.8GB 14.4GB
20 Generate Bundle RDD 27.0GB 18.7GB

325

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun

Table 4. Redundant Shuffle Operations

Pipeline Orignal Redundant Calculations
Running Time 21min 18mins
Stage Num. 38 22
Core Hour 74.95h 63.98h
GC Time 7.16h 6.34h
Shuffle Time 46.83min 24.29min
Shuffle Data 326.1GB 187.0GB

Effect of Redundancy Elimination: To compare the
effect of redundancy elimination, we tested the performance
gains of this optimization strategy. We chose a 256 cores
cluster and the SRR622461 dataset (18.7G bases paired-end
reads). Table 4 shows the performance gain of redundancy
elimination strategy. The second and third columns indicate
whether this mechanism is activated respectively. As can
be seen from the above chart, the optimized cluster disk
and network usage has been significantly reduced. This is
because the execution engine eliminated the redundancy
calculation that contains a lot of groupBy, join and Shuffle
operations.

5.3 Performance Analysis
To identify whether scale-out beyond 2048 cores is feasi-
ble, we systematically identified the potential performance
bottlenecks of our GPF. Given the large volume of genomic
data, the probability is high that genomic data will not fit in
memory. The assumption is that I/O of our GPF is still a bot-
tleneck. Our expectation is that time blocked on either disk
or network would represent the majority of job completion
time.

5.3.1 I/O Behavior of GPF
Using blocked time analysis [24], we computed the improve-
ment in job completion time if tasks did not spend any time
blocked on either disk or network I/O. The improvement
indicates that an upper bound of genomic applications from
disk and network I/O optimization.

without
Disk

without
Network

Fraction of
time spent
writing/
reading
shuffle data
to/from disk

Fraction of
time spent
garbage
collecting

job 0 base
time

job 1 base
time

in Job 0
Fraction of
time spent
writing/
reading
shuffle
data to/
from disk

in Job1
Fraction of
time spent
writing/
reading
shuffle
data to/
from disk

in Job 0
gc fraction

in Job 1
gc fraction

WGS 0.02733402270578 0.013816940850689 0.0132573109061995 0.203298240460558 988628 1410673 0.0321741639065 0 0.139548341267 0.247975451508

WES 0.032563894096481 0.007904387522273 0.0249904750494191 0.0839609510466405 2797570 318927 0.0278394251154 0 0.0547962261851 0.339788646196

GenePanel 0.026787870016423 0.005772123992671 0.0235451005931359 0.058354667118958 2001349 146907 0.0252734048983 0 0.0436330710882 0.258910471094

WGS
JOB 0
STAGE 15 1502 tasks �avg runtime: 31908.9141145� max runtime: 93701� Start:
1490185722233� runtime: 511245� Max concurrency: 94.0� Input MB: 14465.1937752 �from
shuffle�� Output MB: 17415.5787134� Straggers: 96� Progress rate straggers: 96� Progress
rate stragglers explained by scheduler delay �0�� HDFS read �0�� HDFS and read �0�� GC
�0�� Network �0�� JIT �-1�� output rate stragglers: 0

Base: 522551� faster: 498361.127348

STAGE 16 1502 tasks �avg runtime: 4315.08255659� max runtime: 39769� Start:
1490186233497� runtime: 73435� Max concurrency: 89.0� Input MB: 17414.3863001 �from
shuffle�� Output MB: 17535.5067282� Straggers: 347� Progress rate straggers: 310�
Progress rate stragglers explained by scheduler delay �7�� HDFS read �0�� HDFS and read
�7�� GC �50�� Network �23�� JIT �-1�� output rate stragglers: 0

Base: 78871� faster: 69150.690622

STAGE 17 1502 tasks �avg runtime: 16856.960719� max runtime: 148752� Start:
1490186306950� runtime: 278388� Max concurrency: 91.0� Input MB: 21688.1694012 �from
shuffle�� Output MB: 0� Straggers: 430� Progress rate straggers: 292� Progress rate
stragglers explained by scheduler delay �1�� HDFS read �0�� HDFS and read �1�� GC �114��
Network �45�� JIT �-1�� output rate stragglers: 0

Base: 292009� faster: 279609

Combined stages set�>0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14@�

Base: 95197� faster: 93433.634018

Faster time: 940554.451988, base time: 988628
No disk speedup: 0.951373471101

Network
STAGE 15 1502 tasks �avg runtime: 31908.9141145� max runtime: 93701� Start:
1490185722233� runtime: 511245� Max concurrency: 94.0� Input MB: 14465.1937752 �from
shuffle�� Output MB: 17415.5787134� Straggers: 96� Progress rate straggers: 96� Progress
rate stragglers explained by scheduler delay �0�� HDFS read �0�� HDFS and read �0�� GC
�0�� Network �0�� JIT �-1�� output rate stragglers: 0

Base: 522551� faster: 521102

STAGE 16 1502 tasks �avg runtime: 4315.08255659� max runtime: 39769� Start:
1490186233497� runtime: 73435� Max concurrency: 89.0� Input MB: 17414.3863001 �from
shuffle�� Output MB: 17535.5067282� Straggers: 347� Progress rate straggers: 310�
Progress rate stragglers explained by scheduler delay �7�� HDFS read �0�� HDFS and read
�7�� GC �50�� Network �23�� JIT �-1�� output rate stragglers: 0

Base: 78871� faster: 77756

STAGE 17 1502 tasks �avg runtime: 16856.960719� max runtime: 148752� Start:
1490186306950� runtime: 278388� Max concurrency: 91.0� Input MB: 21688.1694012 �from
shuffle�� Output MB: 0� Straggers: 430� Progress rate straggers: 292� Progress rate
stragglers explained by scheduler delay �1�� HDFS read �0�� HDFS and read �1�� GC �114��
Network �45�� JIT �-1�� output rate stragglers: 0

Base: 292009� faster: 279609

Combined stages set�>0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14@�
Base: 95197� faster: 94519
Faster time: 972986, base time: 988628
No network speedup: 0.984178073047

Fraction of time spent writing/reading shuffle data to/from disk: 0.0321741639065

Fraction of time spent garbage collecting: 0.139548341267

JOB 1
******** Computing speedup without disk ********

STAGE 35 1502 tasks �avg runtime: 61981.4021305� max runtime: 706046� Start:
1490186602630� runtime: 1197514� Max concurrency: 78.0� Input MB: 21686.6342516
�from shuffle�� Output MB: 0� Straggers: 291� Progress rate straggers: 170� Progress rate
stragglers explained by scheduler delay �4�� HDFS read �0�� HDFS and read �4�� GC �38��
Network �25�� JIT �-1�� output rate stragglers: 0

Base: 1410673� faster: 1393164

Faster time: 1393164, base time: 1410673
No disk speedup: 0.98758819372

Network
******** Computing speedup without network ********

STAGE 35 1502 tasks �avg runtime: 61981.4021305� max runtime: 706046� Start:
1490186602630� runtime: 1197514� Max concurrency: 78.0� Input MB: 21686.6342516
�from shuffle�� Output MB: 0� Straggers: 291� Progress rate straggers: 170� Progress rate
stragglers explained by scheduler delay �4�� HDFS read �0�� HDFS and read �4�� GC �38��
Network �25�� JIT �-1�� output rate stragglers: 0

Base: 1410673, faster: 1393164
Faster time: 1393164, base time: 1410673
No network speedup: 0.98758819372

Fraction of time spent writing/reading shuffle data to/from disk: 0.0

Fraction of time spent garbage collecting: 0.247975451508

ଘ࣐
disk ܋ғ0.97266597729422
base time: 2399301
faster time: 2333718.451988

Network ܋ғ0.986183059149311
base timeғ 2399301
faster timeғ2366150

WES
Stages to combine: set�>0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20�
21� 22� 23� 24� 25� 26� 27� 28� 29@�

Job 0 has stages: >0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20� 21�
22� 23� 24� 25� 26� 27� 28� 29� 30� 31@

>'63: 1578 tasks'@

Stages to combine: set�>@�

Job 1 has stages: >63@�

JOB 0
STAGE 30 1578 tasks �avg runtime: 1990.32002535� max runtime: 14150� Start:
1489310793470� runtime: 36053� Max concurrency: 88.0� Input MB: 9856.61063671 �from
shuffle�� Output MB: 9855.15408611� Straggers: 499� Progress rate straggers: 260�
Progress rate stragglers explained by scheduler delay �1�� HDFS read �0�� HDFS and read
�1�� GC �39�� Network �48�� JIT �-1�� output rate stragglers: 0

Base: 39045� faster: 32309.71373

STAGE 31 1578 tasks �avg runtime: 16918.1736375� max runtime: 90103� Start:
1489310829539� runtime: 299709� Max concurrency: 90.0� Input MB: 14190.3241081 �from
shuffle�� Output MB: 0� Straggers: 435� Progress rate straggers: 232� Progress rate
stragglers explained by scheduler delay �0�� HDFS read �0�� HDFS and read �0�� GC �86��
Network �27�� JIT �-1�� output rate stragglers: 0

Base: 318810� faster: 311702

Combined stages set�>0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20�
21� 22� 23� 24� 25� 26� 27� 28� 29@�

Base: 2439715� faster: 2358757.00801

Faster time: 2702768.72174� base time: 2797570
No disk speedup: 0.966112991539

Network
STAGE 30 1578 tasks �avg runtime: 1990.32002535� max runtime: 14150� Start:
1489310793470� runtime: 36053� Max concurrency: 88.0� Input MB: 9856.61063671 �from
shuffle�� Output MB: 9855.15408611� Straggers: 499� Progress rate straggers: 260�
Progress rate stragglers explained by scheduler delay �1�� HDFS read �0�� HDFS and read
�1�� GC �39�� Network �48�� JIT �-1�� output rate stragglers: 0

Base: 39045� faster: 37143

STAGE 31 1578 tasks �avg runtime: 16918.1736375� max runtime: 90103� Start:
1489310829539� runtime: 299709� Max concurrency: 90.0� Input MB: 14190.3241081 �from
shuffle�� Output MB: 0� Straggers: 435� Progress rate straggers: 232� Progress rate
stragglers explained by scheduler delay �0�� HDFS read �0�� HDFS and read �0�� GC �86��
Network �27�� JIT �-1�� output rate stragglers: 0

Base: 318810� faster: 311702

Combined stages set�>0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20�
21� 22� 23� 24� 25� 26� 27� 28� 29@�

Base: 2439715� faster: 2430775

Faster time: 2779620, base time: 2797570
No network speedup: 0.993583717298

Fraction of time spent writing/reading shuffle data to/from disk: 0.0278394251154

Fraction of time spent garbage collecting: 0.0547962261851

JOB 1
******** Computing speedup without disk ********
STAGE 63 1578 tasks �avg runtime: 16722.7807351� max runtime: 83120� Start:
1489311147918� runtime: 297374� Max concurrency: 89.0� Input MB: 14188.7933044
�from shuffle�� Output MB: 0� Straggers: 374� Progress rate straggers: 142� Progress
rate stragglers explained by scheduler delay �0�� HDFS read �0�� HDFS and read �0��
GC �8�� Network �10�� JIT �-1�� output rate stragglers: 0
Base: 318927� faster: 312243
Faster time: 312243, base time: 318927
No disk speedup: 0.979042225964

******** Computing speedup without network ********
STAGE 63 1578 tasks �avg runtime: 16722.7807351� max runtime: 83120� Start:
1489311147918� runtime: 297374� Max concurrency: 89.0� Input MB: 14188.7933044
�from shuffle�� Output MB: 0� Straggers: 374� Progress rate straggers: 142� Progress
rate stragglers explained by scheduler delay �0�� HDFS read �0�� HDFS and read �0��
GC �8�� Network �10�� JIT �-1�� output rate stragglers: 0
Base: 318927� faster: 312243
Faster time: 312243, base time: 318927
No network speedup: 0.979042225964

Fraction of time spent writing/reading shuffle data to/from disk: 0.0

Fraction of time spent garbage collecting: 0.339788646196

ଘ࣐
disk ܋ғ0.967436105903519
base time: 3116497
faster time: 3015011.72174

Network ܋ғ0.992095612477727
base timeғ3116497
faster timeғ3091863

GenePanel
Stages to combine: set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29])
Job 0 has stages: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
['63: 470 tasks']
Stages to combine: set([])
Job 1 has stages: [63]

JOB 0
STAGE 27 152 tasks (avg runtime: 70770.8486842, max runtime: 126718) Start:
1489314379599, runtime: 148835, Max concurrency: 73.0, Input MB: 2129.76419449 (from
shuffle), Output MB: 1499.72720051, Straggers: 35, Progress rate straggers: 35, Progress
rate stragglers explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (0),
Network (0), JIT (-1), output rate stragglers: 0

Base: 178193, faster: 175228.141967

STAGE 28 152 tasks (avg runtime: 42261.9736842, max runtime: 137276) Start:
1489314528448, runtime: 137279, Max concurrency: 47.0, Input MB: 1499.72720051 (from
shuffle), Output MB: 1371.84646416, Straggers: 41, Progress rate straggers: 36, Progress
rate stragglers explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (0),
Network (0), JIT (-1), output rate stragglers: 2

Base: 198815, faster: 197623.681996

STAGE 29 470 tasks (avg runtime: 19628.887234, max runtime: 168271) Start:
1489314185123, runtime: 189379, Max concurrency: 49.0, Input MB: 872.169652939 (from
shuffle), Output MB: 686.77644825, Straggers: 118, Progress rate straggers: 94, Progress
rate stragglers explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (1),
Network (0), JIT (-1), output rate stragglers: 7

STAGE 30 470 tasks (avg runtime: 1244.25957447, max runtime: 15382) Start:
1489314665735, runtime: 15383, Max concurrency: 39.0, Input MB: 2058.24668503 (from
shuffle), Output MB: 2056.50834942, Straggers: 194, Progress rate straggers: 104,
Progress rate stragglers explained by scheduler delay (1), HDFS read (0), HDFS and read
(1), GC (16), Network (19), JIT (-1), output rate stragglers: 1

Base: 17387, faster: 16105.90856

STAGE 31 470 tasks (avg runtime: 25065.7638298, max runtime: 148432) Start:
1489314681131, runtime: 148436, Max concurrency: 80.0, Input MB: 6388.74658489 (from
shuffle), Output MB: 0, Straggers: 122, Progress rate straggers: 54, Progress rate stragglers
explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (24), Network (2),
JIT (-1), output rate stragglers: 0

Base: 165201, faster: 157035

Combined stages set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 29])

Base: 1441753, faster: 1400573.06499

Faster time: 1946565.79751, base time: 2001349
No disk speedup: 0.972626861936

Network
STAGE 27 152 tasks (avg runtime: 70770.8486842, max runtime: 126718) Start:
1489314379599, runtime: 148835, Max concurrency: 73.0, Input MB: 2129.76419449 (from
shuffle), Output MB: 1499.72720051, Straggers: 35, Progress rate straggers: 35, Progress
rate stragglers explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (0),
Network (0), JIT (-1), output rate stragglers: 0

Base: 178193, faster: 178193

STAGE 28 152 tasks (avg runtime: 42261.9736842, max runtime: 137276) Start:
1489314528448, runtime: 137279, Max concurrency: 47.0, Input MB: 1499.72720051 (from
shuffle), Output MB: 1371.84646416, Straggers: 41, Progress rate straggers: 36, Progress
rate stragglers explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (0),
Network (0), JIT (-1), output rate stragglers: 2

Base: 198815, faster: 198815

STAGE 29 470 tasks (avg runtime: 19628.887234, max runtime: 168271) Start:
1489314185123, runtime: 189379, Max concurrency: 49.0, Input MB: 872.169652939 (from
shuffle), Output MB: 686.77644825, Straggers: 118, Progress rate straggers: 94, Progress
rate stragglers explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (1),
Network (0), JIT (-1), output rate stragglers: 7

STAGE 30 470 tasks (avg runtime: 1244.25957447, max runtime: 15382) Start:
1489314665735, runtime: 15383, Max concurrency: 39.0, Input MB: 2058.24668503 (from
shuffle), Output MB: 2056.50834942, Straggers: 194, Progress rate straggers: 104,
Progress rate stragglers explained by scheduler delay (1), HDFS read (0), HDFS and read
(1), GC (16), Network (19), JIT (-1), output rate stragglers: 1

Base: 17387, faster: 17206

STAGE 31 470 tasks (avg runtime: 25065.7638298, max runtime: 148432) Start:
1489314681131, runtime: 148436, Max concurrency: 80.0, Input MB: 6388.74658489 (from
shuffle), Output MB: 0, Straggers: 122, Progress rate straggers: 54, Progress rate stragglers
explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (24), Network (2),
JIT (-1), output rate stragglers: 0

Base: 165201, faster: 157035

Combined stages set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 29])

Base: 1441753, faster: 1440464

Faster time: 1991713, base time: 2001349
No network speedup: 0.995185247551

Fraction of time spent writing/reading shuffle data to/from disk: 0.0252734048983

Fraction of time spent garbage collecting: 0.0436330710882

JOB 1
******** Computing speedup without disk ********

STAGE 63 470 tasks (avg runtime: 19849.8829787, max runtime: 130237) Start:
1489314838084, runtime: 130238, Max concurrency: 72.0, Input MB: 6392.46044636 (from
shuffle), Output MB: 0, Straggers: 122, Progress rate straggers: 39, Progress rate stragglers
explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (10), Network (2),
JIT (-1), output rate stragglers: 0

Base: 146907, faster: 144143

Faster time: 144143, base time: 146907
No disk speedup: 0.981185375782

******** Computing speedup without network ********

STAGE 63 470 tasks (avg runtime: 19849.8829787, max runtime: 130237) Start:
1489314838084, runtime: 130238, Max concurrency: 72.0, Input MB: 6392.46044636 (from
shuffle), Output MB: 0, Straggers: 122, Progress rate straggers: 39, Progress rate stragglers
explained by scheduler delay (0), HDFS read (0), HDFS and read (0), GC (10), Network (2),
JIT (-1), output rate stragglers: 0

Base: 146907, faster: 144143

Faster time: 144143, base time: 146907
No network speedup: 0.981185375782

Fraction of time spent writing/reading shuffle data to/from disk: 0.0

Fraction of time spent garbage collecting: 0.258910471094

ଘ࣐
disk ܋ғ0.973212129983577
base time: 2148256
faster time: 2090708.79751

Network ܋ғ0.994227876007329
base timeғ2148256
faster timeғ2135856

Re
du

ct
io

n
in

 J
CT

1%

2%

3%

4%

5%

Aligner Cleaner Caller

0.58%0.79%
1.38%

2.68%
3.26%

2.73%

without Disk
without Network

Fr
ac

tio
n

of
 ti

m
e

sp
en

t w
rit

in
g/

re
ad

in
g

sh
uf

fle
 d

at
a

to
/fr

om
 d

is
k

0%

0.52%

1.04%

1.56%

2.08%

2.6%

WGS WES GenePanel

2.355%
2.499%

1.326%

Fr
ac

tio
n

of
 ti

m
e

sp
en

t g
ar

ba
ge

co

lle
ct

in
g

0%

5%

10%

15%

20%

25%

WGS WES GenePanel

5.835%
8.396%

20.33%

Ti
m

e
(in

 s
ec

on
ds

)

1400

2800

4200

5600

7000

Number of Cores
128 256 512 1024

GPF Mark Duplicate
ADAM Mark Duplicate
GATK Mark Duplicate
Persona Mark Duplicate

Sp
ee

du
p

0

2

4

6

8

Ti
m

e
(in

 m
in

ut
es

)

0

100

200

300

400

Number of Cores
128 256 512 1024 2048

Churchill
GPF
Churchill Speedup
GPF Speedup

Figure 12. Improvement in job completion time (JCT) as a
result of eliminating all time blocked on disk or network I/O.

Diks I/O: Time blocked on disk I/O consists of two types
of points in task execution: the first is time that the task
spent blocked waiting for shuffle data to be read from remote
machine and the second is time that the tasks which write
shuffle data to disk. Spark writes all shuffle data to disk,
even when input data are read from memory. Using blocked
time analysis, we found that the median improvement from
eliminating all time blocked on disk is at most 2.7% across
all workloads as shown in Figure 12, which includes all trials
of each stage in each workload in the WGS pipeline. The
fact that this improvement is non-zero indicates that even in-
memory workloads store shuffle data on disk. We also found
that the amount of data sent over the network is often much
less than the data transferred to disk because the memory
capacity is limited.

Network I/O: To test the improvement in job completion
time as a result of eliminating all time blocked on network,
we measured the largest possible improvement from op-
timizing the network. As shown in Figure 12, the largest
improvement in job completion time as a result of taking out
network time is 1.38%. The blocked time instrumentation for
the network included time to read shuffle data over the net-
work and the time to write output data to one local machine
and two remote machines. Both of these times include disk
use as well as network use because disk and network are
interlaced in a manner that makes them difficult to measure
separately.

5.3.2 Bounding Factor Analysis
These results eliminated the possibility that disk or network
creates a bottleneck for GPF. Time blocked on disk I/O and
network I/O can only improves the job completion time (JCT)
by a maximum of 4.6% in our GPF. To better understand this
measurement, we identified the true bounding factors by
comparing resource utilization between CPU and I/O.
Figure 13 (a) and 13 (b) displays the throughput of disk

read/write and network transfer, respectively. Figure 13 (a)
displays aggregated disk throughput and IOPS data for the
execution on 2048 cores. Evidently, the data volume of disk
read/write can not saturate the disk bandwidth. At the be-
ginning of the pipeline, the conversion of the FASTQ file to
RDD format generate intensive disk and network operations.
During the process of pipeline execution, the Processes op-
erate on RDD in memory. However, due to the limited mem-
ory space, some shuffle operations incur scattered writes
on either local disk and remote disk. In the Caller phase, a
re-partition Process is applied to evenly distributed active
regions among the task for load balance. The re-partition
was designed to generate abundant serializations to disk
files which are then read by the paired-HMM algorithm for
traversing active regions to call variants.

The blocked time analysis is consistent with resource uti-
lization (Figure 13 (c)). Eliminating time blocked on disk I/O
can only improve job completion time by a maximum of

326

High-Performance Genomic Analysis Framework with In-Memory Computing PPoPP ’18

14.90GiB

11.18GiB

7.45GiB

3.73GiB

0.00Bytes

0

25k

50k

75k

100k

Summarized Disk throughputs & IOPS

Th
ro

ug
hp

ut
 P

er
 S

ec
on

d O
peration Per Second

05:00 10:00 15:00 20:00

read_bytes write_bytes read_io write_io

recv_bytes send_bytes recv_packets send_packets errorsrecv_bytes

22.35GiB

16.76GiB

11.18GiB

5.59GiB

0.00Bytes

Th
ro

ug
hp

ut
 P

er
 S

ec
on

d

0

4M

8M

12M

16M

Packet Per Second

05:00 10:00 15:00 20:00

Summarized Network throughputs & Packet-per-seconds
(a) The aggregated disk throughput

(b) The aggregated network throughput

Pe
rc
en
t

idle user system iowait others

05:00 10:00 15:00 20:00

75

100

Highcharts.com

Summarized CPU usage
120

100

60

0

Pe
rc
en
ta
ge

Aligner Cleaner Caller

idle

120

(b) The aggregated network throughput

Pe
rc

en
ta

ge 100

60

05:00 10:00 15:00 20:00

Summarized CPU usage

user system iowait others
(c) The resource utilization of CPU, disk and network

Pe
rc
en
t

idle user system iowait others

05:00 10:00 15:00 20:00

75

100

Highcharts.com

Summarized CPU usage
120

100

60

0

Pe
rc
en
ta
ge

Aligner Cleaner Caller

idle

120

Pe
rc

en
ta

ge 100

60

05:00 10:00 15:00 20:00

Summarized CPU usage

user system iowait others
(c) The resource utilization of CPU, disk and network

14.90GiB

11.18GiB

7.45GiB

3.73GiB

0.00Bytes

0

25k

50k

75k

100k

Summarized Disk throughputs & IOPS

Th
ro

ug
hp

ut
 P

er
 S

ec
on

d O
peration Per Second

05:00 10:00 15:00 20:00

read_bytes write_bytes read_io write_io

recv_bytes send_bytes recv_packets send_packets errorsrecv_bytes

22.35GiB

16.76GiB

11.18GiB

5.59GiB

0.00Bytes

Th
ro

ug
hp

ut
 P

er
 S

ec
on

d

0

4M

8M

12M

16M

Packet Per Second

05:00 10:00 15:00 20:00

Summarized Network throughputs & Packet-per-seconds

(a) The aggregated disk throughput

(b) The aggregated network throughput

14.90GiB

11.18GiB

7.45GiB

3.73GiB

0.00Bytes

0

25k

50k

75k

100k

Summarized Disk throughputs & IOPS
Th

ro
ug

hp
ut

 P
er

 S
ec

on
d O

peration Per Second

05:00 10:00 15:00 20:00

read_bytes write_bytes read_io write_io

recv_bytes send_bytes recv_packets send_packets errorsrecv_bytes

22.35GiB

16.76GiB

11.18GiB

5.59GiB

0.00Bytes

Th
ro

ug
hp

ut
 P

er
 S

ec
on

d

0

4M

8M

12M

16M

Packet Per Second

05:00 10:00 15:00 20:00

Summarized Network throughputs & Packet-per-seconds

(a) The aggregated disk throughput

(b) The aggregated network throughput

120
100

60

Summarized CPU usage

Pe
rc

en
ta

ge

Aligner Cleaner Caller

idle user system iowait others
05:00 10:00 15:00 20:00

(c) The resource utilization of CPU, disk and network

�1

Figure 13. Performance profiling of GPF system on the 2048
cores Spark cluster.

4.6%. This suggested that jobs may be CPU bound. Because
measuring when a task is using only a CPU versus when
background I/O is occurring is difficult, we instead examined
the utilization of both CPU and disk utilization to understand
the importance of CPU use. Figure 13 (c) shows that tasks
are likely blocked while waiting on computation to complete.
According to the x-axis in Figure 13 (c), the largest number of
CPU-intensive jobs was found in the alignment, recalibration
and variant calling steps of the pipeline. Both the BWA-MEM
and HaplotypeCaller are computationally intensive com-
ponents of the pipeline in which CPU architecture and speed
completely determine efficiency and time-to-solution. To
improve I/O performance, serialization and compression al-
gorithm in the engine decrease the I/O and increase the CPU
requirements, which is one reason for the relatively high

use of CPU in our GPF. However, considering the volume
of genomic data, serialization and compression formats will
inevitably evolve in the future. In conclusion, CPU utiliza-
tion is currently much higher than disk, the utilization ration
can navigate the tradeoff between CPU and I/O time when
tuning the in-memory computing model.
6 Related Work
Table 5 summarizes results from our experiment or cited
paper in usability and implementation perspectives. To date,
most implementations use map-reduce as a programming
model. [10, 12–14, 20, 22] GATK-Queue [10] provides a scatter-
gather parallelization to run on multiple nodes. Both Huge-
Seq [14] and Churchill [12] optimize parallel performance by
partitioning either reads or genomes. Churchill enables divi-
sion across genomic regions with fixed boundaries. These
studies use workflow management systems for sharing and
persisting intermediate data, which must spill to disk. More-
over, most of these studies are based on the current Se-
quence/Binary Alignment/Map (SAM/BAM) formats, which
was not designed to scale well to large datasets. To improve
I/O performance through in-memory computing, ADAM and
GATK4 implement well-established tools on top of Apache
Spark. ADAM provides a set of APIs based on GATK, while
only partial programs like BQSR and INDEL Realignment in
Cleaner are available. GATK4 is released as a beta version,
most of the components are still under development.
Table 5. Comparison of various platforms for genome data
analysis. The numbers of GPF, GATK4, and Persona are from
our experiment results. Others are from the cited papers.

Parallel
Framework

In-memory
Computing #Cores Parallel

Efficiency

GPF full
√

2048 > 50%
Churchill [12] full × 768 28%
HugeSeq [14] full × 48 ∼50%

GATK-Queue [10] full × 48 ∼50%
ADAM [19] Cleaner

√
1024 14.8%

GATK4 [9] Cleaner&Caller
√

1024 41.6%
Persona-BWA [3] Aligner&Cleaner × 512 51.1%

7 Conclusion
In recent years, NGS methods enable researchers to perform
whole-genome studies with large quantities of data, which
requires ease of use, high performance, and reproducibility
of computational tools. Our GPF allows users to write a
serial program according to the protocol of bioinformatics
pipeline (think-in-serial) while transparently take advantage
of high performance in-memory computing models (run-in-
parallel). In conclusion, we believe that our novel GPF system
will render various disparate genomic applications into high-
performance, easy-to-use systems. Thus, our system presents
an important addition to already available tools used for
handling WGS-related data and associated genome analysis.
Importantly, with tools like our GPF is should be possible to
move closer to the realization of personalized medicine.

327

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xueqi Li, Guangming Tan, Bingchen Wang, Ninghui Sun

Acknowledgments
This research is supported The National Key Research and
Development Program of China (2016YFB0201305,2016YFB02
00504, 2016YFB0200803,2016YFB0200300) and National Nat-
ural Science Foundation of China, under grant no. (61521092,
91430218, 31327901, 61472395, 61432018). We would like to
express sincere thanks to our shepherd, Frank Mueller, and
our reviewers for their constructive feedbacks.

References
[1] 2016. HG19 Human Genome Download. http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/bigZips/. (2016).
[2] 2016. Picard: A set of command line tools (in Java) for manipulat-

ing high-throughput sequencing (HTS) data and formats such as
SAM/BAM/CRAM and VCF. http://broadinstitute.github.io/picard/.
(2016).

[3] Stuart Anthony Byma, Sam David Whitlock, Laura Flueratoru, Ethan
Tseng, Christos Kozyrakis, Edouard Bugnion, and James Larus. 2017.
Persona: A High-Performance Bioinformatics Framework. In USENIX
Annual Technical Conference 2017.

[4] Sebastian Deorowicz and Szymon Grabowski. 2011. Compression of
DNA sequence reads in FASTQ format. Bioinformatics 27, 6 (2011),
860–862.

[5] Apache Software Foundation. Online. Apache Hadoop. http://hadoop.
apache.org/. (Online).

[6] Claudia Gonzaga-Jauregui, James R Lupski, and Richard A Gibbs. 2012.
Human genome sequencing in health and disease. Annual review of
medicine 63 (2012), 35–61.

[7] Illumina. 2012. HiSeq Sequencing System. http://www.illumina.com/.
(2012).

[8] illumina. 2017. NovaSeq. https://www.illumina.com/systems/
sequencing-platforms/novaseq.html. (2017).

[9] Broad Institute. Online. GATK-4. https://github.com/broadinstitute/
gatk. (Online).

[10] Broad Institute. Online. GATK Queue. http://gatkforums.
broadinstitute.org/discussion/1306/overview-of-queue. (Online).

[11] Scott D Kahn. 2011. On the future of genomic data. science 331, 6018
(2011), 728–729.

[12] Benjamin J. Kelly, James R. Fitch, Yangqiu Hu, Donald J. Corsmeier,
Huachun Zhong, Amy N. Wetzel, Russell D. Nordquist, David L. New-
som, and Peter White. 2015. Churchill: an ultra-fast, deterministic,
highly scalable and balanced parallelization strategy for the discov-
ery of human genetic variation in clinical and population-scale ge-
nomics. Genome Biology 16, 1 (2015), 1–14. https://doi.org/10.1186/
s13059-014-0577-x

[13] Patricia Kovatch, Anthony Costa, Zachary Giles, Eugene Fluder,
Hyung Min Cho, and Svetlana Mazurkova. 2015. Big omics data expe-
rience. In the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM Press, New York, New York,
USA, 1–12.

[14] Hugo Y K Lam, Cuiping Pan, Michael J Clark, Phil Lacroute, Rui Chen,
Rajini Haraksingh, Maeve O’Huallachain, Mark B Gerstein, Jeffrey M
Kidd, Carlos D Bustamante, and Michael Snyder. 2012. Detecting and
annotating genetic variations using the HugeSeq pipeline. Nat Biotech
30, 3 (03 2012), 226–229. http://dx.doi.org/10.1038/nbt.2134

[15] Ben Langmead, Cole Trapnell, Mihai Pop, Steven L Salzberg, et al. 2009.
Ultrafast and memory-efficient alignment of short DNA sequences to
the human genome. Genome biol 10, 3 (2009), R25.

[16] Heng Li and Richard Durbin. 2009. Fast and accurate short read
alignment with Burrows–Wheeler transform. Bioinformatics 25, 14
(2009), 1754–1760.

[17] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils
Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, et al. 2009.
The sequence alignment/map format and SAMtools. Bioinformatics
25, 16 (2009), 2078–2079.

[18] Xueqi Li, Guangming Tan, Chunming Zhang, Xu Li, Zhonghai Zhang,
and Ninghui Sun. 2016. Accelerating large-scale genomic analysis
with Spark. In Bioinformatics and Biomedicine (BIBM), 2016 IEEE Inter-
national Conference on. IEEE, 747–751.

[19] Matt Massie, Frank Nothaft, Christopher Hartl, Christos Kozanitis, An-
dré Schumacher, Anthony D Joseph, and David A Patterson. 2013.
Adam: Genomics formats and processing patterns for cloud scale
computing. University of California, Berkeley Technical Report, No.
UCB/EECS-2013 207 (2013).

[20] A Mckenna, M Hanna, E Banks, A Sivachenko, K Cibulskis, A Kernyt-
sky, K Garimella, D Altshuler, S Gabriel, and M Daly. 2010. The
Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Research 20, 9 (2010),
1297–303.

[21] Michael L Metzker. 2010. Sequencing technologies—the next genera-
tion. Nature reviews genetics 11, 1 (2010), 31–46.

[22] Nabeel M Mohamed, Heshan Lin, and Wuchun Feng. 2013. Acceler-
ating data-intensive genome analysis in the cloud. In Proceedings of
the 5th International Conference on Bioinformatics and Computational
Biology (BICoB), Honolulu, Hawaii, USA.

[23] Frank Austin Nothaft, Matt Massie, Timothy Danford, Zhao Zhang,
Uri Laserson, Carl Yeksigian, Jey Kottalam, Arun Ahuja, Jeff Ham-
merbacher, Michael Linderman, et al. 2015. Rethinking data-intensive
science using scalable analytics systems. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. ACM,
631–646.

[24] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, Byung-
Gon Chun, and V ICSI. 2015. Making Sense of Performance in Data
Analytics Frameworks.. In NSDI, Vol. 15. 293–307.

[25] Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim,
David R Kelley, Harold Pimentel, Steven L Salzberg, John L Rinn, and
Lior Pachter. 2012. Differential gene and transcript expression analysis
of RNA-seq experiments with TopHat and Cufflinks. Nature protocols
7, 3 (2012), 562.

[26] Matei Zaharia, William J. Bolosky, Kristal Curtis, Armando Fox,
David A. Patterson, Scott Shenker, Ion Stoica, Richard M. Karp, and
Taylor Sittler. 2011. Faster and More Accurate Sequence Align-
ment with SNAP. CoRR abs/1111.5572 (2011). arXiv:1111.5572
http://arxiv.org/abs/1111.5572

[27] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2.
http://dl.acm.org/citation.cfm?id=2228298.2228301

[28] Jing Zhang, Heshan Lin, Pavan Balaji, and Wu-chun Feng. 2013. Opti-
mizing Burrows-Wheeler Transform-Based Sequence Alignment on
Multicore Architectures. CCGRID (2013), 377–384.

328

http: //hgdownload.cse.ucsc.edu/goldenPath/hg19/ bigZips/
http: //hgdownload.cse.ucsc.edu/goldenPath/hg19/ bigZips/
http://broadinstitute.github.io/picard/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.illumina.com/
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://github.com/broadinstitute/gatk
https://github.com/broadinstitute/gatk
http://gatkforums.broadinstitute.org/ discussion/1306/overview-of-queue
http://gatkforums.broadinstitute.org/ discussion/1306/overview-of-queue
https://doi.org/10.1186/s13059-014-0577-x
https://doi.org/10.1186/s13059-014-0577-x
http://dx.doi.org/10.1038/nbt.2134
http://arxiv.org/abs/1111.5572
http://arxiv.org/abs/1111.5572
http://dl.acm.org/citation.cfm?id=2228298.2228301

	Abstract
	1 Introduction
	2 Background
	2.1 WGS Pipeline

	3 The Genomic Programming Model
	3.1 Process and Resource
	3.2 Data Format and API

	4 Execution Engine
	4.1 Overview
	4.2 Genomic Data Compression
	4.3 DAG Scheduler
	4.4 RDD Partition

	5 Evaluation
	5.1 Experimental Setup and Data Sets
	5.2 Performance Evaluation
	5.3 Performance Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

