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ABSTRACT
GPUs are widely used in accelerating deep neural networks (DNNs)
for their high bandwidth and parallelism. But tuning the perfor-
mance of DNN computations is challenging, as it requires a thor-
ough understanding of both underlying architectures and algorithm
implementations. Traditional research, which focused on analyzing
performance by CUDA C language or PTX instructions, has not
combined hardware features tightly with source code. In this paper,
we present a performance analysis framework at the assembly level.
First, an instruction parser takes assembly source code, benchmark
results, and hardware features as input to identify each instruc-
tion’s e�ciency and latency. �en, a DAG constructor builds a DAG
that models instruction executions. Finally, a performance advisor
incorporates block partitions, occupancy, and the generated DAG to
predict running cycles of the source code and presents its potential
bo�lenecks. We demonstrate the e�ectiveness of our framework by
optimizing DNNs’ performance-critical kernels–GEMM and convo-
lution. A�er taking steps to reduce bo�lenecks, the experimental
results show that our GEMM is 20% faster than cuBLAS, and our
convolution outperforms cuDNN by 40%-60%. Because of the usage
of assembly instructions, we can predict performance with an error
as low as 2% in average.
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1 INTRODUCTION
Recently, the spring up of DNN applications causes a surge of
research on optimizing DNN computations on di�erent architec-
tures [3, 16, 17, 24, 25, 28]. Among these devices, GPUs have
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high memory bandwidth and a massive number of threads, sat-
isfying a vast quantity of training data and parameters. Deep learn-
ing frameworks, such as Ca�e [10], Torch [6], �eano [9], and
cuDNN [4], embraced GPU-optimized implementations; previous
research also focused on e�cient algorithms [15, 17], parallelism
approaches [12, 24], and memory e�ciency [16] for DNN compu-
tations on GPUs. However, they have not built a comprehensive
model to link architectural characteristics with algorithms and
kernel designs. More than that, even the state-of-the-art libraries–
cuDNN and cuBLAS only achieve about 60%-70% theoretical per-
formance on Kepler GPU. �us, it is urgent to build a model that
helps programmers understand the performance bo�lenecks with
regard to underlying architectures and algorithms and direct them
to optimize applications.

Although existing models on GPUs could analyze applications
either at run-time [27] or in a static way [5, 14, 14, 22], they are
insu�cient to help programmers optimize source code under spe-
ci�c architectures at the development stage. �e primary limiting
factor is the usage of CUDA C language or PTX instructions [19]
that are not feasible for programmers to do performance tuning
for two reasons: (1) �ey do not contain control code that allows
programmers to manipulate issue behavior, which is important for
promoting the performance. For example, with the help of control
code, we can activate the instruction dual-issue mechanism. (2) A
PTX instruction or a C statement might map to many assembly
instructions so that we cannot precisely measure its latency and
count the number of instructions. �erefore, it is demanding for us
to analyze programs at the assembly level.

To solve the aforementioned problems, we propose a perfor-
mance analysis framework based on GPU assembly instructions,
directing programmers or compilers to generate highly optimized
code. �e framework consists of three parts. First, we devise an
instruction parser to extract instruction dependencies and calculate
instruction e�ciencies. �e second component is a DAG constructor
that links instructions by their dispatch order and dependencies to
generate a DAG. Besides, it calculates block partitions to get the
number of iterations the DAG executes and links hardware resource
constraints with source code resource usage to derive occupancy
on SMs. �ird, a performance advisor estimates the running cycles
for the source code by incorporating the DAG, block iterations, and
occupancy. �e advisor also indicates potential bo�lenecks and
in turn helps programmers tune their applications by modifying
assembly instructions. To summarize, we have made the following
contributions:

• We built a performance analysis framework at the assem-
bly level, which benchmarks instruction characteristics,
estimates running cycles, and points possible bo�lenecks
of given source code.
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• We demonstrated the e�ectiveness of our framework by
optimizing GEMM and convolution on Kepler GPU. Under
the direction of performance advisor, we can eliminate
each bo�leneck step by step with register blocking, high
bandwidth memory instruction, instruction scheduling,
instruction dual-issue, and read-only cache.

• In the experiments, our GEMM achieved 88% peak e�-
ciency, which outperforms cuBLAS with up to 20%; our
convolution achieved 83% peaking e�ciency, which is 40%-
60% faster than cuDNN in a variety of network con�gura-
tions. Our analyzer accurately predicted the running time.
Comparisons between the actual results and prediction of
the model show that average error is 2%.

We organize the rest of the paper as follows. Section 2 reviews
GPU architectures and DNN computations. Section 3 describes our
performance analysis framework. Section 4 illustrates the e�ective-
ness of our model by optimizing two core computations in DNNs.
Section 5 presents related works. Section 6 concludes and describes
future research.

2 BACKGROUND
2.1 GPU Architectures
Modern GPUs are designed for compute-intensive applications,
such as DNN computations. In this part, we review general designs
for NVIDIA GPUs. A GPU is composed of a piece of global memory
and many streaming multiprocessors (SMs). Each SM contains
a variety of function units: streaming processors (SPs) that have
�oating point units (FPUs) and integer units (INTUs) inside, double
precision units (DPUs), special function units (SFUs), and load
store units (LDSTs). �e SM also has a piece of low latency shared
memory, on which users can explicitly allocate and access data.
With the development of GPU architectures, NVIDIA incorporates
cache hierarchy into its design. It has L1 cache and read-only cache
on each SM and L2 cache shared by all SMs.

A warp is the minimum scheduling unit on GPUs. An SM may
have multiple warp schedulers to manage warps. Recent genera-
tions of GPUs contain multiple dispatch units within a scheduler
that issue instructions simultaneously. Whereas if two schedulers
contend on the same function units, one of them has to wait for
another to issue �rst. An SM holds multiple blocks that maintain
several warps. �e number of blocks resides on an SM concur-
rently is called active blocks, which is determined by the resource
constraints such as available registers and shared memory.

2.2 DNN Computations
A neural network is composed of many neurons that serve as basic
computational units. Each neuron is connected with others and may
have a function which combines its inputs together. Besides, some
neural networks organize neurons as multiple layers in which the
la�er layers take inputs from the formers. DNNs take independent
samples, called batch, to apply the function. Suppose that the batch
size is N , and a neuron is connected to every neuron in the previous
layer, we derive Equation 1 which represents the fully connected
layer. For simplicity, we use I to denote the input layer, O to denote

the output layer, andW to denote the weight on links.

O[n][i] =
K∑
k=0

I [n][k] ×W [k][i] (1)

O[n][i]: �e ith element in the nth output sample.
I [n][k]: �e kth element in the nth input sample.
W [k][i]: �e weight on the link of kth input element to the ith
output element.
We could apply a highly optimized GEMM routine for the above
equation. Various kinds of DNN computations, such as multi-layer
perceptron (MLP), recurrent neural network (RNN), and convolu-
tion neural network (CNN) follow the above computation pa�erns.
�erefore, the core of optimizing DNN computations lies on boost-
ing the performance of GEMM and hiding memory movement
latency within �oating point computations.

A convolution layer extracts features from input samples by
applying a dot product with a �lter, repeating the procedure stride
by stride along each input channel, and combining the results into
output channels. Input, �lter, and output are 4-D tensors. To dif-
ferentiate their dimensions, we adopt similar notations as [15]: N
(batch size), C (input channels), H (input height),W (input width),
K (output channels), P (output height), Q (output width), R (�l-
ter height), and S (�lter width). Input samples have NCHW di-
mensions, �lters have KCRS dimensions, and output samples have
NKPQ dimensions. We use Equation 2 to present the convolution
computation.

O[n][k][i][j] =
C∑
c=0

R∑
r=0

S∑
s=0

I [n][c][i × stride+

r ][j × stride + s] × F [k][c][r ][s]
(2)

O[n][k][i][j]: �e element on ith row and jth column in the kth
output channel of nth output sample.
F [k][c][r ][s]: �e element on rth row and sth column in the cth
input channel and kth output channel of the �lter.
I [n][c][i×stride+r ][j×stride+s]: �e element on the correspond-
ing position indexed by output row i , column j and stride in the
cth input channel of nth input sample.
We observe that the above equation could be viewed as a GEMM
process a�er collapsing some dimensions. In particular, we collapse
the last two dimensions of O , the last three dimensions of F , and
the last three dimensions of I . We also record the o�sets of the last
three dimensions in I in an index array.

O[n][k][ij] =
C×R×S∑
ci j=0

I [n][index[cij]] × F [cij][k] (3)

In this way, each element ofO is calculated via a GEMM kernel. We
call this method direct convolution [11] since it is derived directly
from the de�nition. Unlike FFT and Winograd methods [7, 15], the
method is straightforward and does not involve constraints such as
stride = 1. We will refer to this method as convolution in following
sections.

3 PERFORMANCE ANALYSIS FRAMEWORK
We developed a performance analysis framework at the assembly
level, shown in Figure 1. At the outset, we benchmark essential
instruction features. We insert test instructions into a code snippet,
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Instruction Parser DAG Constructor Performance Advisor

Test Instructions
IADD R0, R1, R2
IADD R3, R0, R4

Hardware features
• SMs and schedulers
• Global memory size
• Transaction width
• Shared memory size
• Bank width
• Function units

Source code
• Registers
•�reads
• Shared memory
• GEMM.sass
• Convolution.sass

Algorithm variables
• GEMM: M , N , bm, bn
• Conv: P , Q , K , N , bk , bn

Assembler Benchmark

E f f iciency

Dependency

Sinдle-warp DAG Multi-warp DAG

Occupancy

BlocksBlock partitions

Bcomp

Bmem

Bilp

cycles

Bpipe

Memory access mode
Function units utilization

Source code analysis Hardware resource constraints
Source code resource usage

CUBINs

Schedulers

Optimize source code by eliminating bo�lenecks

Figure 1: Assembly level performance analysis framework

wrapped by time measurement instructions. �en, we adopt exist-
ing GPU assemblers [26] according to speci�c GPU architectures.
A�er compiling the snippet to CUBINs, our benchmark program
invokes them and outputs instruction latencies.

�e instruction parser associates the source code with hardware
features to analyze each instruction’s function unit utilization and
memory access mode. It outputs instruction e�ciencies and depen-
dencies.

�e DAG constructor starts by combing benchmark results, in-
struction e�ciencies and dependencies to generate a DAG at the
single-warp level. �en, the DAG is extended to multi-warp by sum-
ming up dispatches of all schedulers. We use hardware resource
constraints and source code resource usage, such as shared memory
and register usage, to get occupancy that decides the number of
active warps that execute the DAG concurrently. We uses block
partitions by algorithm variables and the kernel size to determine
the number of iterations the DAG runs.

With the DAG, occupancy, and number of blocks, the perfor-
mance advisor estimates the running cycles of the source code.
More than that, the advisor proposes potential bo�lenecks for
programmers, including instruction level parallelism (Bilp ), com-
pute e�ciency (Bcomp ), memory e�ciency (Bmem ), and instruction
pipeline (Bpipe ). Last, by modifying assembly instructions in the
source code, we can ultimately achieve low bo�lenecks to gain
extreme performance.

3.1 Instruction Parser
3.1.1 Function Units Utilization. We de�ne e�ciency E to be the

reciprocal of cycles needed to dispatch a given number of instruc-
tions, and present major steps to calculate e�ciency in Algorithm 1.
Its input is an abstract set of the source code, consisting of instruc-
tion name, modi�er, control code, and operands (dest and sources).
Because some generations of GPUs support instruction dual-issue
mechanism that a warp scheduler could issue two instructions
simultaneously, we should examine the control code and put dual-
issued instructions in the same entry (Line 11-19). For a compute
instruction, Line 32 invokes Equation 4 to calculate its e�ciency.
Suppose that there are several function units in an SM, we use Eu
to denote the e�ciency for function unit u. And for instructioni ,

Algorithm 1 Instruction e�ciency
1: Input
2: asmSet : a set of asm structures
3: . asm − 〈name, control,modif ier, dest, source1, source2...〉
4: Output
5: insSet : a set of ins structures
6: . ins − 〈asm1, asm2...〉
7: ef f Map : a map of asm → ef f iciency
8: insSet ← 0
9: ef f Map ← 0

10: i ← 0
11: while i < asmSet .size do
12: if dual (asmSet [i].control ) then
13: insSet .push (〈asmSet [i], asmSet [i + 1]〉)
14: i ← i + 2
15: else
16: insSet .push (〈asmSet [i]〉)
17: i ← i + 1
18: end if
19: end while
20: for i ← 0, insSet .size do
21: for all asm ∈ insSet [i] do
22: units ← typeof (asm .name )
23: dispatches[units]← dispatches[units] + 1
24: end for
25: for all asm ∈ insSet [i] do
26: units ← typeof (asm .name )
27: if units ==mem then
28: ef f Map[asm]←mem ef f (asm, dispatches[units])
29: . Equation 5, 6
30: else
31: ef f Map[asm]← comp ef f (asm, dispatches[units])
32: . Equation 4
33: end if
34: end for
35: dispatches ← 0
36: end for

we use ui for its functions unit. As denoted in Equation 4, the e�-
ciency depends on the ratio of requested function units to available
function units.

Eui =
1

d
Dispatchesui ×Warp size

Unitsui
e

(4)

3.1.2 Memory Access Mode. Line 29 invokes a separate func-
tion for memory instructions. Unlike compute instructions, mem-
ory instructions’ e�ciency vary for their di�erent access modes.
A memory instruction is issued to LDST units, causing memory
transactions that move a sequence of data between two regions of
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Table 1: Summary of parameters

Name Description Source
S Number of warp schedulers in an SM Hardware features
U Categories of di�erent function units in an SM Hardware features
Unitsui , Unitsldst Number of function units in an SM Hardware features
Warp size Number of threads in a warp Hardware features
Bank width Width of a shared memory bank Hardware features
NSM Number of SMs in a GPU Hardware features
SM threads, SM reдister s, SM shared Size of threads, register, and shared memory in an SM Hardware features
Max widthi Maximum bandwidth for instructioni by adjusting modi�ers Hardware features
Latencyдlobal , Latencyamat ,
Latencyhit , Latencyi

Instruction latencies Benchmark

Ni Number of memory transactions for instructioni Memory access mode
Ins widthi Width for instructioni Memory access mode
Dispatchesui Number of dispatches used for function units Function units utilization
Eui , Eshared , Eдlobal E�ciencies for di�erent types of function units Function units utilization
I Number of instructions Source code analysis
Iu , Icomp, Imem Number of instructions for di�erent function units Source code analysis
Ilat Number of edges in the critical path weighted by latency DAG
Cw , Cb , Ck Cycles of a warp, a block and a kernel DAG
Cwef f Cycles of a warp without instruction latency DAG
Cwu Cycles of a warp with Eu DAG
Block threads, Block reдister s, Block shared Size of threads, registers, and shared memory per block Source code resource usage
Inter leave Average cycles a warp waits for scheduling Source code resource usage
MBT , MBR, MBS, MBB Active blocks restricted by threads, registers, shared memory, and blocks Hardware resource constraints
Active blocks, Active warps Active blocks and warps per SM Occupancy
Block iter s Iterations each SM has to execute active blocks Block partitions

Bcomp, Bmem, Bpipe , Bilp
Bo�lenecks of compute e�ciency, memory e�ciency,
instruction level parallelism and pipeline Advisor

memory, either global memory and registers or shared memory and
registers. We analyze global memory and shared memory accesses
separately.

Shared memory has multiple banks, where the maximum band-
width is bounded by the width per bank (Bank width). If the width
of an instruction (Ins widthi ) is greater than Bank width, the in-
struction has to be issued multiple times. Besides, on shared mem-
ory, each 4-byte (or 8-byte) word is stored in adjacent banks. If
multiple threads access di�erent addresses in the same bank, it
causes bank con�icts. Speci�cally, if there are Ni threads in a warp
con�ict, we call it an Ni -way con�ict in which the instruction is
issued Ni times. Hence, the e�ciency of shared memory is reduced
to 1/Ni as shown by Equation 5.

Eshared =
1

Ni × d
Dispatchesldst×Warp size

Unitsldst
e × d

Ins widthi
Bank width e

(5)
Global memory is accessed via 32, 64, or 128 bytes memory

transactions. If a warp accesses global memory in a coalesced
mode, only a single transaction is needed. Whereas if the warp
accesses global memory in a stridden manner, or if the required
bytes is greater than 128, multiple transactions are required. Let
Ni be the number of transactions needed to access global memory,
we derive Equation 6 to represent the e�ciency of global memory.

Eдlobal =
1

Ni × d
Dispatchesldst×Warp size

Unitsldst
e

(6)

In addition, we observe from our benchmark that if data are loaded
from the read-only cache, the e�ciency is higher than that calcu-
lated by Equation 6. So using the read-only cache results in higher
throughput than loading data from global memory.

Algorithm 2 Instruction dependency
1: Input
2: asmSet : a set of asm structures
3: . asm − 〈name, control,modif ier, dest, source1, source2..〉
4: Output
5: depSet : a list of dep structures
6: . dep − 〈asm f rom, asm to, latency〉
7: depSet ← 0
8: r eдAsm ← 0
9: for i ← 0, asmSet .size do

10: to ← asmSet [i]
11: for all source ∈ to .sources do
12: f rom ← r eдAsm[source]
13: if typeof (f rom .name ) == дlobal then
14: lat ← cachehit (f rom) . Equation 7
15: else
16: lat ← latency[f rom]
17: end if
18: depSet .push (〈f rom, to, lat 〉)
19: end for
20: r eдAsm[to .dest ]← to
21: end for

3.1.3 Latency and Dependency. Algorithm 2 presents an itera-
tive procedure to extract instruction dependencies and associates
them with latencies. In each iteration, it reads previous instruc-
tions that have modi�ed the current instruction’s source registers
at Line 12 and updates the dest register which the current instruc-
tion modi�es at Line 20. Our benchmarks measure the latencies at
Line 16, using the toolchain mentioned in Figure 1. We list some
instructions’ latencies on Kepler K20m in Table 2.

Unlike other instructions, we take cache miss into account for
global memory instructions (Line 14). If data are hit in the cache,
the latency is lower than accessing data from DRAM. We use
Latencyamat to denote the average latency of memory instructions.

Latencyamat = Latencyдlobal ×Miss ratio + Latencyhit (7)



A Performance Analysis Framework for Exploiting GPU Microarchitectural Capability ICS ’17, June 14-16, 2017, Chicago, IL, USA

In Equation 7, Miss ratio is hard to obtain statically. With the incre-
ment of Miss ratio, Latencyдlobal determines the upper bound of
Latencyamat . �us, we consider the Miss ratio as 1 by default and
allow programmers to modify the value by themselves. NVIDIA
employs L1, L2, and read-only caches on GPUs. For brevity, we
omit to expand Latencyhit on every cache level.

Table 2: Instruction latencies

Instruction Type Units Latency
IMAD compute SP(INTU) 9 cycles
IMUL compute SP(INTU) 9 cycles
IADD compute SP(INTU) 9 cycles
FFMA compute SP(FPU) 9 cycles
RCP compute SFU 9 cycles

STS.32 shared LDST 9 cycles
LD.32 global LDST 190 cycles

3.2 DAG Constructor

Algorithm 3 DAG constructor
1: Input
2: insSet : a set of ins structures
3: . ins − 〈asm1, asm2, ...〉
4: depSet : a set of dep structures
5: . dep − 〈asm f rom, asm to, latency〉
6: ef f Map : a map of asm → ef f iciency
7: Output
8: daд : a dag linked by dispatch orders and dependencies
9: Cw : the length of the critical path of daд

10: Cw ← 0
11: daд ← 0
12: for i ← 1, insSet .size do
13: for all f rom ∈ insSet [i − 1] do
14: for all to ∈ insSet [i] do
15: daд[f rom][to]← 1/ef f Map[f rom]
16: end for
17: end for
18: end for
19: for i ← 0, depSet .size do
20: f rom ← depSet [i].asm f rom
21: to ← depSet [i].asm to
22: daд[f rom][to]← 1/ef f Map[f rom] + dep[i].latency
23: end for
24: for i ← 0, insSet .size do
25: for all f rom ∈ insSet [i] do
26: for all to ∈ daд[f rom][to] , 0 do
27: daд[to]← Max {daд[to], daд[f rom][to] + daд[f rom]}
28: end for
29: end for
30: end for
31: for i ← 0, daд .size do
32: Cw ← Max {Cw , daд[i]}
33: end for

3.2.1 Single-warp DAG. Algorithm 3 shows the steps to con-
struct the instruction DAG for a single warp unit. Its inputs are
two sets and a map: insSet that is composed of instructions by
dispatch order, depSet that consists of instruction pairs that have
dependencies, and e f f Map that stores instruction e�ciencies. It
outputs the generated DAG and Cw that indicates the execution
cycles.

�e algorithm begins by presenting each instruction as a node in
the graph, linking them with directed edges in the dispatching order,
and assigning a weight for each edge (Line 12-18). Because a warp
scheduler can issue two instructions simultaneously, we should loop

all asms. It then associates instructions that have dependencies and
adds a directed edge between them (Line 19-23), weighted with the
sum of latency and the reciprocal of e�ciency. Finally, it calculates
every instruction’s running cycles daд[i], 0 ≤ i ≤ I − 1 (Line 24-30)
and extracts their maximum value to be the length of the critical
path (Line 31- 33).

IMUL R1, R2, R3 IMUL R4, R5, R6

STS R7, [R100]

IMAD R8, R8, R9, R1

IADD R10, R7, R11

1/EI NTU = 1 1/EI NTU = 1

1/ELDST = 1

1/EI NTU = 1

1/EI NTU = 1

LatencyIMU L + 1/EI NTU = 10

Figure 2: A DAG example

Figure 2 illustrates a DAG example. Among all the paths, the
length of the critical path (bold lines in the �gure) is 12 cycles,
where the IMUL instruction’s latency contributes 9 cycles.

3.2.2 Multi-warp DAG. An SM consists of multiple warp sched-
ulers that issue instructions concurrently. To represent a DAG
for multiple schedulers, we expand Dispatchesu as the sum of
Dispatchessu from each warp scheduler.

Dispatchesu = ΣS−1
s=0Dispatches

s
u (8)

If warp schedulers con�ict on shared resources, some of them will
wait until the resources are free. Consider the following example
in Figure 3. Suppose there are four warp schedulers with eight
dispatches, but every two schedulers share 3×Warp size SPs. �en,
two schedulers will be idle if all dispatches tend to issue IMUL
instructions. Since only four dispatches are utilized, ESP = 1/2 by
Equation 4. So two cycles are needed to issue eight IMULs.

Scheduler1 Scheduler2 Scheduler3 Scheduler4

32SPs 32SPs 32SPs 32SPs 32SPs 32SPs

IMUL IMUL IMUL
×

IMUL
×

IMUL IMUL IMUL
×

IMUL
×

Figure 3: Resource con�icts by warp parallelism

With the increment of active warps, especially when it exceeds
the number of schedulers, it is hard to predict the execution because
of warp scheduling. We generate the average scheduling interval
for prediction. Let Interleave be the division of Active warps by
Schedulers , we obtain the running time of a block by multiplying
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Interleave with Cw (Equation 10). Cb might be longer than the ac-
tual running time since warp scheduling could hide some latencies.
So Cb is considered to be an upper bound estimation. But since we
focus on compute-intensive applications like DNN computations,
where instruction scheduling can hide most of the latencies,Cb will
be close to the actual value. We provide an analysis of the e�ect of
hiding latencies in Section 3.3.

Interleave =
Active warps

Schedulers
(9)

Cb = Cw × Interleave (10)

3.2.3 Occupancy and Blocks. An SM can run multiple blocks
concurrently, depending on both hardware constraints and ker-
nel resource usage. NVIDIA presents the concept of occupancy to
describe resource utilization rate. We use Equation 11-15 to demon-
strate how the maximum number of blocks is constrained by the
maximum size of threads (MBT), registers (MBR), shared memory
(MBS), and hardware speci�ed block number (MBB).

MBT = b
SM threads

Block threads
c (11)

MBR = b
SM reдisters

Block reдisters
c (12)

MBM = b
SM shared

Block shared
c (13)

Active blocks =min{MBT ,MBR,MBM,MBB} (14)

Active warps = Active blocks × d
Block threads

Warp size
e (15)

For a GPU that has NSM SMs, it handles NSM ×Active blocks
blocks concurrently. Assuming that workloads are distributed
evenly among all SMs, we derive the following equations to es-
timate the running cycles Ck of a computation kernel:

Block iters = d
Blocks

Active blocks × NSM
e (16)

Ck = Cb × Block iters (17)
In Equation 16, Blocks is decided by algorithm variables and kernel
partitions. If the remainder of Blocks and Active blocks × NSM is
large, it causes the long tail phenomenon that puts a cap on the
performance.

3.3 Performance Advisor
We propose four potential bo�lenecks to quantify the performance
from di�erent prospectives. Speci�cally, we analyze Bilp , Bcomp ,
Bmem , and Bpipe of which the best values are 0 and worst values
are 1. Programmers could mitigate these bo�lenecks step by step
to promote the performance. We elaborate details of these metrics
in the following.

Bilp exhibits the bo�leneck of instruction level parallelism, in-
dicating whether di�erent types of instructions are properly dual-
issued or not. Cwu is the length of the critical path in a graph that
extracts Eu from the DAG in Section 3.2. �e longest path among
all Cwu is considered to be the running cycles with the maximum
parallelism level. �en, it compares the value to the length of the
critical path without latencies (Cwef f ) to generate Bilp .

Bilp = 1 −
Max |U |−1

u=0 Cwu

Cwef f

(18)

Bcomp presents the bo�lenecks of compute instructions that
use SFUs or SPs, by dividing the utilized units to the total amount
of units. Programmers could use all schedulers and dual-issue
instructions of the same type to decrease Bcomp .

Bcomp = 1 −
∑Icomp−1
i=0 Eui × Dispatchesui ×Warp size∑Icomp−1

i=0 Unitsui

(19)

Bmem is devised for memory instructions that use LDST units.
It compares the achieved bandwidth with the maximum bandwidth
(Max widthi ) for an instruction. For instance, LDS.32 that reads 32-
bit for each thread from shared memory has the same e�ciency as
LDS.64, while two-folds LDS.32 are needed to load the same amount
of data. So Bmem of using LDS.32 is higher than that of using LDS.64.
For simplicity, we combine the presentation of global memory and
shared memory bo�lenecks, but we adopt di�erent techniques to
eliminate them. On shared memory, we choose instructions that
match bank width and avoid bank con�icts. On global memory, we
coalesce memory accesses and put the read-only cache into use.

Bmem = 1 −
∑Imem−1
i=0 Eui × Inst widthi ×Warp size∑Imem−1

i=0 Max widthi
(20)

Bpipe shows the performance potential by hiding latencies. It
sums up all latencies in the critical path, dividing the result by
the running cycles without latencies (Cwef f ). Programmers could
either reorder instructions in the DAG or increase the number of
Active warps (Active blocks) to cut down the bo�leneck.

Bpipe =

∑Ilat−1
i=0 Latencyi

Cwef f × Interleave
(21)

If a given code snippet is highly optimized, all metrics will be
close to 0. Comparing with traditional models, ours explains how
the performance relates with assembly instructions and hardware
features, and what optimization strategies have e�ects.

4 APPLYING TO DNN
In this section, we apply our framework to optimize two impor-
tant DNN computations: GEMM and convolution. Starting from
a baseline implementation, we demonstrate the e�ectiveness of
optimization strategies by showing the process of mitigating bot-
tlenecks step by step and promoting the performance. To evaluate
the optimization e�ects, we compare the achieved performance
with the predicted performance upper bound. Also, we compare
our results with the state-of-the-art implementations, including
cuBLAS-8.0, cuDNN-5.0, and cuDNN-6.0.

All experiments were run on Kepler K20m with computability
3.5. It has 13 SMs, and each of them has four warp schedulers, 192
SPs, 64 DPs, 32 LDSTs, and 32 SFUs. A warp scheduler can dispatch
two instructions in a cycle. We adopt nvprof to investigate run-time
metrics and present their median numbers in �gures.

4.1 GEMM
�e baseline GEMM implementation is shown in Algorithm 4,
where A is a K ×M matrix, B is a K × N matrix, and C is a M × N
matrix. It �rst uses blocking at the shared memory level. Each block
reads 〈bk ,bm〉 elements from A to smA and 〈bk ,bn〉 elements from
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B to smB and computes a 〈bm ,bn〉 sub-matrix in the result matrixC .
sm
′

A and sm
′

B are switched with smA and smB at the end of every
iteration, hiding global memory latency. It also adopts blocking at
the register level. Every thread reads rm elements from smA and
rn elements from smB , accumulating a 〈rm , rn〉 matrix along the K
dimension.

Algorithm4Double bu�ering GEMM TN implementation (α = 1.0
and β = 0.0): C = C +AT × B
1: smA ← a bk × bm block of A on shared memory
2: smB ← a bk × bn block of B on shared memory
3: rA ← a 1 × rm row of smA on consecutive registers
4: rB ← a 1 × rn row of smB on consecutive registers
5: k ← 0
6: do
7: sm

′

A ← a bk × bm block of A on shared memory
8: sm

′

B ← a bk × bn block of B on shared memory
9: for i ← 0, bk − 1 do

10: accum ← accum + rTA × rB
11: rA ← a row of smA
12: rB ← a row of smB
13: end for
14: smA ↔ sm

′

A
15: smB ↔ sm

′

B
16: k ← k + bk
17: sync
18: while k < K
19: accumulate accum with bm × bn block of C on global memory

4.1.1 Analysis. We focus on the most expensive phase of Al-
gorithm 1 (Line 6-18). In this part, most of the operations are
multiply-and-add instructions (Line 10) that accumulate along the
K dimension and load instructions that read data from shared mem-
ory (Line 11-12).

Bilp : Because compute instructions and memory instructions
use di�erent function units, we can dual-issue load instructions
(LDS) with multiply-and-add instructions (FFMA) to reduce Bilp .

Bcomp : On K20m, four schedulers cannot utilize all 192 SPs with
single-issued FFMAs. Whereas if all schedulers dual-issue FFMAs,
resource con�icts happen. �erefore, we should design a proper
pa�ern to utilize all 192 SPs without con�icts.

Bmem : Apart from issuing LDS with FFMA, we have to choose
appropriate shared memory instructions that �t bank width and
avoid bank con�icts to lower Bshared . For sm′A and sm

′

B that are
read from global memory, we decrease Bдlobal by leveraging the
read-only cache.

Bpipe : By Equation 22, a larger register blocking size leads to
higher arithmetic intensity.

2 × rm × rn
4 × (rm + rn )

(22)

It indicates that the ratio of FFMA instructions to LDS instructions
is increasing with the growth of rm and rn . In this way memory
instruction latency is hidden, rendering low Bpipe . But increasing
the number of registers per thread might reduce the number of
active blocks (Equation 12), which in turn increases Bpipe . Hence,
we should make a balance between parallelism and the blocking
size.

4.1.2 Optimizations. Register Blocking (RB): We can launch
128, 256, 384, or 512 threads per block to let threads evenly dis-
tributed on four warp schedulers. We choose 256 threads that allow
256 registers per block (maximum on Kepler). As mentioned before,
we have to make a balance between parallelism and the blocking
size. We choose the 12 × 12 blocking size, leading to very low∑Ilat−1
i=0 Latencyi in Bpipe (Equation 21). A 13 × 13 blocking size is

not suitable for vector memory instructions, and a 14× 14 blocking
size is too large that the total amount of registers is greater than 256.
Notice that some registers are already occupied for other purposes
like o�set calculation and double bu�ering. In this way bm = 192
and bn = 192.

Utilizing Bank Width (BW): K20m has 64-bit width shared
memory banks. Based on Equation 20, Bshared of using LDS.32
will be greater than LDS.64, as two-folds LDS.32 are needed to
load the same amount of data comparing with LDS.64. Using
LDS.128, though matches 64-bit bank width, leading to bank con-
�icts. �ereby, we use LDS.64 to load data from shared memory.

Dual-issue (DUAL): If we single-issue FFMAs, only 2
3 SPs are

utilized; if all schedulers dual-issue FFMAs, we encounter resource
con�icts. Hence, we eliminate Bcomp with a pa�ern that mixes
dual-issued instructions and single-issued instructions. On K20m,
a control instruction is followed by seven normal instructions. As-
suming that the warp scheduling algorithm could choose the best
strategy to �ll instruction pipelines, all pa�erns that have half dual-
issued FFMAs and half single-issued FFMAs can make full use of
SPs and eliminate Bcomp . We devise the “1-2-2-1” pa�ern. �at is,
in the �rst cycle the scheduler issues an FFMA, following four FF-
MAs in the next two cycles, and the last FFMA is dual-issued with
another instruction like LDS, which also reduces Bilp . Compar-
ing with other pa�erns, it consumes only four cycles and uses the
operand collector mechanism [26] to avoid register bank con�icts.

Instruction Scheduling (IS): We schedule instructions care-
fully to cut down Bpipe . In the “1-2-2-1” pa�ern, we have an empty
slot le� to dual-issue an instruction with the last FFMA instruction.
�us, apart from the mentioned LDS instruction, we also insert
other instructions, such as o�sets calculation and texture barriers
into these empty slots. We use the DAG speci�ed in Section 3.2
to reorder instructions, aiming to obtain a shorter length of the
critical path (Cw ).

Read-only Cache (ROC): We adopt LDG instruction, which
reads data from the read-only cache and has a higher throughput
than LD instruction that loads data from global memory. To keep
data consistency, We insert a texture barrier into the loop (Line 6-
18), thus hiding at most 200 cycles DRAM latency on K20m (Table 2).
We use 128-bit modi�er–LDG.128 with the highest throughput.

4.1.3 Optimization Steps. Figure 4 shows GEMM’s optimization
steps, in which we present Bдlobal and Bshared separately.

We start from mitigating Bshared by leveraging LDS.64 to �t
shared memory bank width (+BW). Bilp is also reduced due to the
decrement of Cwef f in Equation 18. �en, we eliminate Bcomp by
dual-issuing FFMA (+DUAL), improving the performance by 50%.
Since shared memory instructions are dual-issued with the last
FFMA instruction in the “1-2-2-1” mode, the optimization lowers
Bilp signi�cantly. Instruction scheduling (+IS) mitigates Bpipe by
organizing instructions which are dual-issued with the last FFMA.
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Figure 4: GEMM optimization steps

Last, we adopt LDG.128 that reads data from the read-only cache
(+ROC) to reduce Bдlobal . We achieve 115% speedup with step-by-
step optimizations �nally.

4.1.4 Performance Prediction and Evaluation. Figure 5 shows
the results of GEMM performance by square matrices M = N = K
from 384 to 5760. Model-predict is the estimated running time of
the whole program. When the matrix size is small (less than 1000),
the total number of blocks is small so that SMs are not fully utilized.
�erefore, both cuBLAS and our ASM render low performance, and
ASM performs worse than cuBLAS because cuBLAS automatically
uses small size kernels to avoid the long tail phenomenon illustrated
by Equation 16. With the increment of shape size, ASM beats
cuBLAS by about 20%, utilizing about 88% �oating-point resources.
Our model could precisely predict the performance of ASM and
guide optimizations. �e average 2% predict error is caused by the
neglect of register bank con�icts and synchronization e�ects.

1,000 3,000 5,000

1,000

2,000

3,000

Matrix Size

GF
LO

PS

Model-predict
ASM

cuBLAS

Figure 5: GEMM performance

We capture six metrics at run-time to reason the performance
bene�ts compared with cuBLAS in Table 3. In GEMM’s compute
phase, two types of instruction dominate: LDS and FFMA. ASM
achieves 951GB/s shared memory load throughput, three times of
cuBLAS’s 384GB/s, which illustrates the e�ectiveness of optimizing
Bmem . ASM shows 86% �oating point e�ciency, while cuBLAS
only has 72%; ASM also has 6.1 IPC (Instructions per cycle), but
cuBLAS only has 5.3. �ese indicate that ASM has reduced Bcomp
and Bilp by enabling the dual-issue mechanism. Moreover, we
reorder instructions to hide instruction latencies. But as cuBLAS is
also highly optimized, both implementations have very low mem-
ory instruction stall and execution instruction stall, indicating low
Bpipe .

Table 3: Comparison between assembly GEMM and cuBLAS
metrics (M=N=K=3840)

Metrics cuBLAS ASM
Shared memory throughput 384GB/s 951GB/s
Execution stall 2.6% 3.2%
Memory stall 0% 0%
IPC 5.3 6.1
Occupancy 12% 12%
SP e�ciency 72% 86%

4.2 Convolution
Equation 2 indicates that the convolution process partitions on K
(bk ) and N (bn ) dimensions and incorporates a similar calculation
to GEMM, despite that it has to generate an index array to retrieve
o�sets. We use a single warp to calculate the index array and let
others wait until it �nishes. �is bene�ts from using intra-warp
bit operators like VOTE and POPC and avoiding communication
across di�erent warps. We also focus on the compute phase as it
plays the most expensive part in most con�gurations.

4.2.1 Analysis. Pad reduce: Di�erent from GEMM, the com-
pute phase fetches data on the CHW dimension of the input using
the index array (Equation 3). In some con�gurations (Table 5), we
pad elements on the input. Because all the padding elements are
zeros, we can avoid fetching them without loss of accuracy.

P = (H + 2 × pad − R)/stride + 1 (23)

Q = (W + 2 × pad − S )/stride + 1 (24)

Pad reduce =

∑P×Q−1
i=0 Actual compi

2 × P ×Q × R × S (25)

Equation 25 expresses an approximation of the number of computa-
tions. Intuitively, it equals to the number of computations without
pad over the computations with pad . We estimate the running
cycles as Ck × Pad reduce .

Bilp ,Bcomp , Bmem , Bpipe : �e compute phase of convolution
is similar to GEMM in which the most instructions are FFMA and
LDS. Hence, we use the “1-2-2-1” pa�ern (DUAL) to dual-issue
LDS with FFMA, mitigating Bcomp and Bilp . Likewise, Bmem is
eliminated with suitable bank width (BW) and the read-only cache
(ROC). However, comparing with GEMM, it has to generate the
o�set of the index array and read data from it. Because of the
growth of extra instructions, we cannot hide latencies only by
instruction scheduling (IS). Under the circumstance, we add the
number of active warps to diminish Bpipe (Equation 21).

4.2.2 Optimizations. As discussed before, we apply DUAL, BW,
IS, and ROC in the same way as GEMM. Two di�erent optimization
steps are listed as following:

Register Blocking (RB): In GEMM, we use a 12 × 12 register
blocking size, requiring bk = 192 and bn = 192. But it is too large
for K and N as shown in Table 5 such that some threads remain
idle in the compute phase. So we use a 8 × 8 register blocking size
for bk = 128 and bn = 128 to �t for most con�gurations.

Register Reuse (RR): As mentioned in Section 4.2.1, we should
increase the number of active warps to hide latencies. During the
compute phase, we can carefully reuse some registers, rendering
128 registers per thread so that each SM holds two active blocks
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Figure 6: Convolution performance on di�erent networks
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Figure 7: Convolution optimization steps

instead of one. In this way, we increase Interleave in Equation 21
and thus reduce Bpipe .

4.2.3 Optimization Steps. We examine optimization e�ects in
Figure 7. For the baseline kernel, Bpipe is high because of instruc-
tion latencies. So we reuse registers (+RR) to hide latencies. To
lower Bshared , we adopt LDS.64 (+BW) to utilize shared memory
bank width. It also reduces Bilp as the number of LDS instructions
is diminished. Bcomp and Bilp are eliminated by dual-issuing FFMA
and LDS instructions (+DUAL), which improves the performance
by 50%. Interestingly, because the running cycles are reduced,
Bpipe increases. We then lower Bpipe by reordering instructions
(+IS). Finally, we use the read-only cache (+ROC) to achieve higher
throughput, eliminating Bдlobal .

4.2.4 Performance Prediction and Evaluation. Figure 6 displays
the experimental results of three classical convolution networks in
Table 5. Model-core is the predicted running time of the core loop
which we optimized, which could be regarded as the prediction of
performance upper bound. Our ASM achieves 83% �oating point
e�ciency at maximum, and it outperforms cuDNN’s GEMM based
convolution in all layers, with up to 60%. Conv1, Conv2, and Conv14
show relatively low performance but close to Model-core, as their
Ks are not a multiple of bk = 128 so that some threads remain idle.
�e problem can be �xed by using smaller size kernels. Conv6 in
VGG di�ers from the mentioned three layers, in which Model-core is
greatly higher than ASM. Two reasons explain the phenomenon: (1)
ItsC , R, and S are small so that other phases, such as the generation
of the index array, play a signi�cant part. (2) C × R × S is less than
8 × 8, the register blocking size, and thereby some iterations are
not needed. �e problems can be solved by reducing the number
of blocks to increase each block’s compute iterations. Our model

can precisely predict most of the con�gurations by incorporating
the Pad reduce parameter in Equation 25.

Table 4: Comparison between assembly convolution and
cuDNN metrics (Conv13)

Metrics cuDNN ASM
Shared memory throughput 492GB/s 1000GB/s
Execution stall 3.5% 0%
Memory stall 8.1% 0%
IPC 4.5 5.6
Occupancy 24% 24%
SP e�ciency 59% 76%

To investigate micro-architecture level advantages over cuDNN,
we also benchmark six metrics. Because cuDNN consists of several
kernel calls, we only display the one takes the most time. Like
the GEMM comparison, our ASM has a higher shared memory
throughput, SP e�ciency, and IPC, indicating that we have reduced
Bmem , Bcomp and Bilp . More than that, ASM’s instruction execu-
tion stall and memory stall are lower than cuDNN, which illustrates
the e�ectiveness of eliminating Bpipe .

5 RELATEDWORKS
�is section reviews previous research about performance analysis
on GPUs and accelerations on deep neural networks.

�e performance model on GPU is an e�ective tool for directing
programmers to tune their applications. [8] provided a model based
on MWP (memory warp parallelism) and CWP (compute warp
parallelism). But their work was built on PTX instructions, and
they regarded shared memory instructions the same as compute
instructions. [22] extended the MWP-CWP model. It analyzed
applications in both dynamic and static ways, taking bank con�icts
into account. However, they still used PTX instructions for per-
formance prediction. [27] presented a quantitative study based on
assembly instructions to inspect run-time program features. [14]
and [5] built performance models for speci�c applications. None
of the previous works have developed a thorough framework to
analyze program bo�lenecks and guide programmers choosing
assembly instructions.

Since deep neural networks [13, 21, 23] have achieved signi�-
cant successes in various applications, there has been an emergence
of approaches to utilize e�cient hardware [1–3] to accelerate dif-
ferent networks. Among these acceleration methods, GPUs have
the highest compute e�ciency and memory bandwidth. Hence,
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DNN libraries [4, 9, 11, 18] for GPUs are widely used for develop-
ing neural networks. Recent research has dealt with architectural
e�ects that impact DNN performance on GPUs. [17] investigated
di�erent convolution libraries by comparing run-time metrics like
global memory e�ciency and warp e�ciency. [16] studied di�erent
storage formats of input data and provided automatic transform
strategies to gain the highest performance. But they have not built
models to associate algorithms with GPU features. Although vendor
products like cuDNN [4] and cuBLAS [20] provide some e�cient
GPU implementations, their source code is not open source to meet
the the growth of DNN computation pa�erns. It is necessary to
provide developers a complete toolchain, helping them quickly
instantiate fast kernels under speci�c architectures.

Table 5: Classic CNN networks

Layer N K H&W R&S C pad stride
Alexnet

Conv1 128 64 224 11 3 3 4
Conv2 128 192 27 5 64 2 1
Conv3 128 384 13 3 192 1 1
Conv4 128 256 13 3 384 1 1
Conv5 128 256 13 3 256 1 1

VGG
Conv6 128 64 224 3 3 1 1
Conv7 128 128 112 3 64 1 1
Conv8 128 256 56 3 128 1 1
Conv9 128 256 56 3 256 1 1
Conv10 128 512 28 3 256 1 1
Conv11 128 512 28 3 512 1 1
Conv12 128 512 14 3 512 1 1
Conv13 128 512 14 3 512 1 1

Overfeat
Conv14 128 96 231 11 3 0 4
Conv15 128 256 28 5 96 0 1
Conv16 128 512 12 3 256 1 1
Conv17 128 1024 12 3 512 1 1
Conv18 128 1024 12 3 1024 1 1

6 CONCLUSION
�is paper presents a GPU performance analysis framework at the
assembly level. It analyzes assembly instructions, generates a DAG
to model instruction behavior, and incorporates occupancy and
block partitions for accurate prediction. �e framework also ad-
vises potential bo�lenecks of compute e�ciency, memory e�ciency,
instruction level parallelism and instruction pipeline to guide pro-
grammers for performance tuning. By mitigating these bo�lenecks
step by step, we succeed in promoting two vital DNN computations:
GEMM and convolution. �e limitation of the methodology is the
availability of a tool to handle assembly instructions. We plan to
extend the instruction parser for various GPU architectures.
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