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Abstract
In this paper, we present a methodology to understand GPU
microarchitectural features and improve performance for
compute-intensive kernels. The methodology relies on a
reverse engineering approach to crack the GPU ISA en-
codings in order to build a GPU assembler. An assembly
microbenchmark suite correlates microarchitectural features
with their performance factors to uncover instruction-level
and memory hierarchy preferences. We use SGEMM as a
running example to show the ways to achieve bare-metal
performance tuning. The performance boost is achieved by
tuning FFMA throughput by activating dual-issue, eliminating
register bank conflicts, adding non-FFMA instructions with
little penalty, and choosing proper width of global/shared
load instructions. On NVIDIA Kepler K20m, we develop a
faster SGEMM with 3.1Tflop/s performance and 88% ef-
ficiency; the performance is 15% higher than cuBLAS7.0.
Applying these optimizations to convolution, the implemen-
tation gains 39%-62% performance improvement compared
with cuDNN4.0. The toolchain is an attempt to automati-
cally crack different GPU ISA encodings and build an as-
sembler adaptively for the purpose of performance enhance-
ments to applications on GPUs.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming---parallel program-
ming; D.3.2 [Programming Languages]: Language Classi-
fications---assembly languages

General Terms Performance, Benchmarking

Keywords SGEMM, Assembler, GPU, Performance, Con-
volution, Reverse-engineering GPU ISA encoding
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1. Introduction
As GPUs provide higher peak floating-point performance
and memory bandwidth than CPUs, researchers tend to
adopt GPUs to accelerate compute-intensive data-parallel
programs. Hardware vendors provide performance-critical
libraries tuned on their specific processors, such as Intel
MKL [14] and AMD ACML [3] for multicore x86 CPUs
and NVIDIA cuBLAS [14] and AMD clMath [2] for GPUs.
However, third-party implementations consistently outper-
form these vendor libraries. For example, OpenBLAS [30],
based on the hand-tuned assembly, achieves better perfor-
mance than AMD ACML on AMD Piledriver processors
and Intel MKL on Intel Sandy Bridge processors. Although
a comprehensive OpenBLAS-like library is not available
for GPUs, several efforts [6, 11, 16, 25, 29] were invested
to achieve better performance than cuBLAS’s GEMM by
tuning assembly on NVIDIA GPUs. However, these works
leave two open questions to be addressed for diligent per-
formance tuning on the microarchitecture of every GPU
generation. Since single-precision general matrix multiply
(SGEMM) is extensively used in scientific applications and
deep learning related domains, we use SGEMM as a running
example for a concise presentation throughout this paper.

• A toolchain that can identify GPU microarchitectural
features and guide performance tuning is lacking. Un-
like the general-purpose CPU community, where a se-
ries of toolchains is available to tune performance in a
bare-metal way, only the CUDA model is encouraged
in the GPU community. NVIDIA engineers hand tune
their supported libraries in GPU assembly language; thus,
this leaves other unsupported algorithms poorly opti-
mized. Fortunately, researchers have made some initial
progress on performance tuning tools, including bench-
marking [18, 29, 31] and the design of assemblers on par-
ticular GPU architectures [5, 10, 12, 27]. In this paper,
we develop a methodology to systematically identify mi-
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croarchitectural features by automatically cracking ISA
encoding, building a GPU assembler, and benchmarking.
• There is a lack of comprehensive understanding of the

computational kernels’ performance behavior in terms
of the low-level GPU microarchitecture. Most SGEMM
analyses are circumscribed at the CUDA or PTX level
due to the shortage of GPU bare-metal tools. Therefore,
these studies cannot directly diagnose compiler deficien-
cies or hardware defects. By observing the disassembled
codes of CUDA SGEMM, we find out that control codes
generated by the CUDA compiler NVCC are inefficient
in exploiting the FP32 Fused Multiply Add (FFMA) dual-
issue feature on a Kepler GPU (details in Section 4.2).
This implies that the binary codes generated by NVCC
cannot utilize GPU cores efficiently. In addition, the com-
piler deficiencies can lead to a biased estimation of the
performance bound.

In this paper, we automate the ISA-to-binary mapping
and build a Kepler GPU assembler. Due to the compatible
syntax with disassembly generated by cuobjdump [21], we
can use NVCC to compile CUDA codes to a cubin file and
then disassemble it to generate assembly. This approach al-
lows users to optimize any code segment based on the gen-
erated assembly instead of coding from scratch. With this
assembler, a microbenchmark suite is designed to under-
stand and analyze a plenty of GPU microarchitectural fea-
tures such as instruction throughput, warp scheduling, and
register bank distribution. These features are helpful to un-
derstand and optimize the performance of a computational
program. More specifically, we make the following contri-
butions:

• We propose a GPU ISA encoding solver to crack ISA en-
codings of diverse GPU microarchitectures automatically
by feeding disassembly codes. A Kepler GPU assembler
is developed to tune the assembly codes generated by the
CUDA compiler directly.
• We design a microbenchmark suite to explore the undoc-

umented microarchitecture features of NVIDIA GPUs,
such as control codes regulating FFMA instruction dual-
issue and register bank indices influencing instruction
throughput. These features are necessary to understand
and tune GPU programs.
• We implement both SGEMM and convolution kernels on

an NVIDIA Kepler GPU by applying the microarchitecture-
level optimizations. The optimized SGEMM achieves
up to 88% of the machine’s peak floating-point perfor-
mance, which is 15% higher than cuBLAS7.0. The op-
timized convolution kernel gains 39%-62% performance
improvement compared with cuDNN4.0.

Our methodology is suitable for other NVIDIA GPU ar-
chitectures with minor adjustments of the instruction solver,
assembler, and benchmarking. The experience of exploring

bare-metal optimizations is helpful for compiler develop-
ment and performance tuning [33].

The rest of this paper is organized as follows. Section 2
introduces the SGEMM algorithm on a GPU and the CUDA
binary utilities. Section 3 presents the instruction solver al-
gorithms and microbenchmarking insights. In Section 4,
a series of microarchitectural optimizations are applied to
SGEMM. We report the experimental results in Section 5.
Section 6 discusses the generality and portability of our
methodology for different GPUs and diverse algorithms.
Section 7 summarizes the related work. Finally, Section 8
concludes this work.

2. Background
This section first highlights tunable factors that determine
SGEMM performance on the GPU architecture; it then in-
troduces some CUDA binary utilities related to SGEMM op-
timizations at the assembly level for self-containment.

2.1 Performance Factors of SGEMM
The state-of-the-art SGEMM implementations on GPUs [11,
16, 19, 25] use two-level blocking, register and shared mem-
ory blockings, to exploit data reuse through the GPU mem-
ory hierarchy. The operation of SGEMM is defined as C =
beta∗C+alpha∗AB, where A, B, and C are m×k, k×n,
and m× n matrices, respectively, while alpha and beta are
scalar constants.

Algorithm 1 shows the skeleton of the blocked SGEMM
algorithm. Task partitioning is based on the result matrix C.
Every tx × ty thread block is responsible for computing a
bm × bn matrix block of C by reading a bm × bk block of
A and a bk × bn block of B, where bk is the unrolling factor.
Therefore, A, B, and C are divided into M ∗K, K ∗N and
M ∗N grids with bm×bk, bk×bn, and bm×bn blocks, where
M =

⌊
m+bm−1

bm

⌋
, K =

⌊
k+bk−1

bk

⌋
, and N =

⌊
n+bn−1

bn

⌋
.

Algorithm 1 has 2×rx×ry×bk floating-point operations
(flops) on each thread for one iteration of the while loop.
Table 1 estimates the data movement volume through reg-
isters, shared memory, and global memory correspondingly.
These parameters demonstrate that SGEMM performance is
determined by the hierarchical memory blocking and the un-
rolling factor of the inner for loop. Tuning these factors relies
on GPU memory bandwidth and latency. According to pre-
vious work [19, 25], tuning proper parameters to overcome
memory bandwidth limits is relatively easy with the esti-
mates in Table 1. Performance tuning for memory latency
is much more difficult since latency is closely coupled with
particular microarchitectural features such as the instruction
sequence and instruction types, which depends on a GPU
toolchain and an assembler to identify.

2.2 CUDA Binary Utilities
Though no official GPU assembler is publicly available,
NVIDIA provides a PTX assembly compiler PTXAS and
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Algorithm 1 Blocked SGEMM algorithm of a tx×ty thread
block. bm, bn, bk are shared memory blocking sizes, rx and
ry are register blocking sizes.
1: . Shared memory variables: smA, smB , sm′

A, sm′
B

2: . Registers variables: accum[rx × ry ], rA[rx], rB [ry ], r′A[rx],
r′B [ry ].

3: smA ← a bm × bk block of A
4: smB ← a bk × bn block of B
5: rA ← a column of smA

6: rB ← a row of smB

7: do
8: sync
9: . Shared memory double buffering

10: sm′
A ← another bm × bk block of A

11: sm′
B ← another bk × bn block of B

12: . Thread-local computation
13: for i← 0, . . . bk − 1 do . loop unrolling
14: r′A ← a column of smA

15: r′B ← a row of smB

16: if i is even then . Register double buffering
17: accum← accum+ rA ◦ rB . ◦: outer-product
18: else
19: accum← accum+ r′A ◦ r

′
B

20: end if
21: end for
22: smA ↔ sm′

A; smB ↔ sm′
B . swap shared memory pointers

23: while one more valid bk × bn block of B exists
24: store accum with bm × bn block of C to global memory

Table 1: Data movement volume of each thread for one while
loop iteration.

Data path Volume (in words)
global⇒register (LDG) rx×ry×bk

bm
+

rx×ry×bk
bn

register⇒shared (STS) rx×ry×bk
bm

+
rx×ry×bk

bn

shared⇒register (LDS) rx × bk + ry × bk

disassembly tools cuobjdump and nvdisasm, which make
it possible to build a GPU third-party assembler. Both
cuobjdump and nvdisasm disassemble cubin files to sass
files, which are a human-readable disassembly for examin-
ing potential performance issues in CUDA programs. Every
instruction in the disassembly is composed of an instruction
address in hexadecimal, instruction content, and the 64-bit
instruction encoding in hexadecimal. For example, an IADD
instruction in disassembly is recorded as follows:

/∗0048∗/ IADD R0, R2, R0; /∗0x4800000000201c03∗/
(1)

Unfortunately, no tools are available to modify the assembly
directly for performance tuning; the CUDA codes can only
be refined and the newly generated disassembly is reexamine
iteratively.

NVIDIA provides its pseudo-assembly language PTX
and its compiler PTXAS, where PTX targets a stable machine-
independent ISA that could span multiple GPU generations.
Its machine-independent property is convenient for com-
piler design, but also brings several performance drawbacks.
First, PTX uses pseudo-registers; programmers cannot con-
trol its register allocation, so register bank conflicts cannot
be avoided. Second, PTX has no control code information

which is used in Kepler and Maxwell GPUs to optimize warp
scheduling. Thus, dual-issue on Kepler and warp scheduling
on both Kepler and Maxwell optimizations cannot be con-
trolled by the PTX programmer. Therefore, an assembler
is required to manipulate the assembly. Although NVIDIA
hasn’t released their internal assembler and instruction en-
coding format, the disassembled codes in sass files and the
pseudo-assembly references [22] provide clues to crack its
instruction format in order to build our own assembler (de-
tails in Section 3). This paper uses disassembly generated
from PTX as the input of the GPU ISA encoding solver.

3. Identifying Microarchitectural Features
We first illustrate the methodology to understand microar-
chitectural features and then explain the three major compo-
nents: a GPU ISA encoding solver, an assembler, and bench-
marks.

3.1 Methodology
We propose a methodology to understand GPU microarchi-
tectural features and correlate them with microbenchmark
performance. The workflow in Figure 1 consists of three
major components: a GPU ISA encoding solver, a GPU as-
sembler, and the microbenchmarks. The sample programs in
Figure 1 are synthetic PTX files which generate specific in-
structions as the input of the instruction solver. Microbench-
marks are designed in assembly to figure out the correlation
between microarchitecture and performance.

We write a simple generator to produce PTX instructions
with various modifiers as the PTX samples. The generated
PTX files are compiled to cubin files by PTXAS, and then
disassembled by cuobjdump to generate native disassem-
bly (around 2300 instruction variants). The ISA encoding
solver takes the disassembly sass file as the input to decode
each field of 64-bit instructions. A set of algorithms are de-
signed to solve all the fields of a binary instruction. The
fields include operands, opcodes, and modifiers. cuobjdump
or nvdisasm is used to disassemble the binaries generated
from the solver algorithms. Our assembler translates every
instruction field to obtain 64-bit binaries and then encapsu-
lates them with an ELF header to generate an executable cu-
bin file. In the benchmarking workflow (dashed arrows in
Figure 1), assembly microbenchmarks are tuned to explore
GPU microarchitectural features such as register banking,
instruction throughput, control codes, and load/store width.

3.2 GPU ISA Encoding Solver
The ISA encoding information that is necessary to build an
assembler is not released by GPU vendors. Previous third-
party work on building GPU assemblers [10, 12, 27] also
involves cracking GPU ISA encodings, whereas no cracking
process is explicitly reported. Our solver is proposed to
make cracking GPU ISA encodings simple, automatic, and
portable to future GPUs.
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Figure 1: A schematic diagram in which GPU microarchitectural
features are demystified by leveraging CUDA binary tools. The
solid arrows represent the workflow of the instruction solver, while
the dashed arrow represents benchmarking to determine the corre-
lation between microarchitectures and performance.

Operands could be registers (e.g., R5), global memory
(e.g., [R6+0x20]), constant memory (e.g., C[0x2][0x40]),
shared memory (e.g., [0x50]), immediate values (e.g., 0x9
and 1.5), or predicate registers (e.g., P3) [22]. We observe
that an operand name always includes a number; thus, an
operand can be inferred by its name. Since a number’s en-
coding can be exactly explained, the operand encoding is rel-
atively easy to recognize. For example, the register operand
R5 can be inferred from 101 in binary format, while the
immediate value 0x9 is 1001. Opcodes and modifiers are
mnemonic symbols, whose encodings cannot be literally ex-
plained; a heuristic algorithm is designed to crack their po-
sitions. In addition, modifiers are instruction-specific. Mod-
ifiers of the same type may have different encodings for dif-
ferent instructions. As an example, masks of the type-size
modifier for instructions LD and LDG are in different binary
positions. Hence, the modifier of every instruction needs to
be processed independently.

3.2.1 Opcode and Modifier Solvers
We design a heuristic algorithm (Algorithm 2) to crack
opcode encodings by detecting their bit positions. The
opcode solver takes N disassembly instructions gener-
ated from PTX samples as the input and outputs all op-
code bit positions as opBits. Each disassembly instruc-
tion inst integrates its 64-bit binary code, name, operand
types, and operand values as a structure. Take the IADD
instruction in Equation 1 as an example; its binary code
is 0x4800000000201c03; the name is IADD; the types of
operands are represented as a string “RRR”; and the values
of operands are represented as a tuple {0, 2, 0}. By flipping
the 64 bits one by one, we determine if each bit belongs to
opcodes. Each flip generates a new binary code ênc, which
is disassembled by nvdisasm to a new instruction înst. If
înst is valid, and its instruction name is different from that
of inst, this bit is in the opcode field.

From our results on a NVIDIA Tesla K20m, we find that
the highest 10 bits and the lowest 2 bits represent opcodes
of GPU Kepler architecture. The time complexity of the op-
code solver is O(64N), where N is the number of instruc-
tions in the disassembly file generated from PTX samples

(N ≈ 2300). This algorithm narrows the opcode enumer-
ation space from 264 to 212. We only enumerate possible
opcodes in the pruned 12 bits and identify all the valid ones.

A modifier defines a specific behavior of an instruction.
For example, LD instruction has type-size modifiers, such as
.u8, .s8, .u16, .32, .64 and .128, and cache operation
modifiers, such as .CS (cache streaming) and .CG (cache at
global level). We use a similar solver by flipping bit-by-bit
to observe whether the bit controls an instruction modifier.
Algorithm 2 Opcode Solver
1: Input: instSet, N disassembly instructions generated from PTX sam-

ples
2: Onput: opBits, opcode positions in the 64-bit encoding
3: for i← 0, . . . , N − 1 do
4: . inst structure: {enc64, name, oprdType, oprd}
5: inst = instSet[i]
6: . the 64-bit encoding of the instruction
7: enc← inst.enc64
8: . check each bit of enc for opcode
9: for j ← 0, . . . , 63 do

10: . flip the jth bit of the encoding
11: ênc = xorAt(enc, j)
12: . disassemble new encoding ênc

13: înst=nvdisasm(ênc)
14: . bit-j is in the opcode field if înst is a different instruction.
15: if isvalid(înst) and inst.name 6= înst.name then
16: put(j, opBits)
17: end if
18: end for
19: end for
20: Return opBits

3.2.2 Operand Solver
Algorithm 3 shows our algorithm of cracking operand en-
codings. Since each instruction may have different numbers
and types of operands, we identify operand positions as a tu-
ple of its name and operand type. The operand types of an in-
struction are represented as a string. For example, oprdType
of the instruction IADD R1, R2, C[0x0][0x40] is “RRC” and
oprdType of IADD R1, R2, 0x8 is “RRI”, where R, C, and
I represent registers, constant memory and immediates, re-
spectively. For each instruction with the known opcode, we
flip each bit to obtain a new instruction înst. We compare
inst with înst using a simple function “whichChange”. This
function confirms which operand value is changed by its po-
sition, if any; otherwise, it returns a negative integer. An
entry in the visited dictionary is marked as 1 to avoid du-
plicated probing. The time complexity of Algorithm 3 is
O(52N), where N is the number of disassembly instructions
with different opcodes.

3.3 Benchmarking
We design a microbenchmark suite to explore NVIDIA GPU
microarchitectural features. As shown in Figure 1, we write
GPU kernel codes in assembly and compile them into cubin
by our assembler. The assembly instructions inside the ker-
nel are unrolled without exceeding the L1 instruction cache
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Algorithm 3 Operand Solver
1: Input: instSet, N disassembly instructions with different opcodes
2: Onput: pos, operand positions for each opcode, a 2D array.
3: visited={} . A dictionary to record the visited information of an

operand bit, key:〈name, oprdType〉
4: for i← 0, . . . , N − 1 do
5: . inst structure: {enc64, name, oprdType, oprd}
6: inst = instSet[i]
7: . check the rest bits of enc for operand by excluding opcode bits
8: for j ← 2, . . . , 53 do
9: . flip jth bit of enc

10: ênc = xorAt(enc, j)
11: . disassemble new encoding ênc

12: înst=nvdisasm(ênc)
13: . If bit-j is an operand bit, return the operand position.
14: p = whichChange(inst,înst)
15: if p > 0 then
16: put(j, pos[〈inst.name,inst.oprdType〉][p])
17: . Mark 〈name, oprdType〉 as visited
18: visited[〈inst.name,inst.oprdType〉] = 1
19: end if
20: end for
21: end for
22: Return pos

size to cover the branch overhead. The kernel code is tested
hundreds of times, and the average time is used for accuracy.
Timing ticks are recorded by the S2R R0, SR_CLOCKLO in-
struction, in which S2R moves the value from the special
clock register SR_CLOCKLO to a general purpose register.
Time is calculated in the general register, and then written
into the global memory. Two metrics are benchmarked: la-
tency and throughput. Latency is tested by a succession of
dependent instructions by launching only one thread block
with 32 threads. Throughput is tested by a succession of in-
dependent instructions by launching enough threads to make
full use of the CUDA cores and memory bandwidth.

In this benchmarking process, we correlate microarchi-
tectural features with the benchmark performance and obtain
some meaningful observations in four microarchitectural
features: register bank, control code, arithmetic throughput,
and memory operation. These observations are useful for
optimizing program snippets of real-world applications.

Observation 1–[Register Bank]: Source register combi-
nations may cause register bank conflicts that degrade in-
struction throughput.

Shared memory bank conflicts are recognized as an im-
portant performance factor for CUDA programming. Re-
cent research [16] has observed that register bank conflicts
are also non-negligible. To probe register bank distribution,
our microbenchmarks measure the instruction throughput
for different combinations of FFMA register operands. Table 2
shows that different register combinations result in various
levels of efficiency and throughput. The rightmost column
represents the number of register bank conflicts recorded in
our experiments. This experiment is conducted in single-
issue mode by setting the control code to 0x20. Theoreti-
cally, without dual-issue, the peak efficiency is 4×32/192 =
66.67%, in which 4 is the number of warp schedulers and

32 is the number of threads in a warp. In fact, we observe
that the single-issue and dual-issue modes produce similar
throughput behavior with bank conflicts. From our experi-
ments on the Kepler architecture, we observe that:

• The destination register does not contribute to bank con-
flicts, so they are free to be assigned to any bank.
• When source registers have 2-way or 3-way register bank

conflicts, the throughput of float instructions drops by
2.33% and 17.17% respectively, in single-issue mode.
• A proper register distribution is found through bench-

marking to eliminate bank conflicts. Table 3 lists par-
tial registers and their corresponding banks on NVIDIA
Tesla K20m, which is consistent with the distribution
on GTX680 [16]. Although they have different maximal
numbers of registers per thread and instruction encod-
ings.

Table 2: The efficiency of instruction throughput varies with dif-
ferent register combinations. Inst: instruction, Th/SM: instruction
throughput per SM, Eff: throughput efficiency, Conf: register bank
conflicts.

Inst Th/SM Eff Conf
FFMA R5,R4,R1,R0 127.50 66.40% 0
FFMA R2,R4,R1,R0 127.50 66.40% 0
FFMA R5,R2,R1,R0 119.18 62.07% 2-way
FFMA R3,R2,R1,R0 119.18 62.07% 2-way
FFMA R5,R9,R3,R1 94.52 49.23% 3-way
FFMA R11,R9,R3,R1 94.52 49.23% 3-way

FMUL R4,R1,R0 127.50 66.40% 0
FMUL R4,R2,R0 119.17 62.06% 2-way

Table 3: Partial register index to register bank mapping.
Bank0 R0 R2 R8 R10 R16 R18 R24 R26
Bank1 R1 R3 R9 R11 R17 R19 R25 R27
Bank2 R4 R6 R12 R14 R20 R22 R28 R30
Bank3 R5 R7 R13 R15 R21 R23 R29 R31

Observation 2–[Control Code]: Warp scheduling and
issue mode are tunable by modifying control codes that reg-
ulate instruction issue.

Starting with the Kepler architecture, NVIDIA has moved
some control logics off the chip and into the kernel instruc-
tions to save power [10, 16]. This evolution provides pro-
grammers with the opportunity to make globally optimal
scheduling decisions and other control optimizations if an
assembler is available. The disassembly codes from sample
programs indicate that a 64-bit binary control code controls
7 instructions is shown in Figure 7. We determine that the
highest 6 bits and the lowest 2 bits are the opcode field of
the scheduling instructions, and the middle 56 bits are used
to control the execution of the following 7 instructions, each
of which is assigned to an 8-bit control code.

We figure out the control code meanings by benchmark-
ing the instruction sequences of different control codes. Bit
4, 5, and 7 represent shared memory, global memory, and
the texture cache dependency barrier, respectively. We crack
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Figure 2: Different control codes impact on performance(subfigure(c), 1→single-issue, 2→dual-issue).

the meanings of bits 0-3 by testing the latency of FFMA in-
structions. Figure 2(a) and Figure 2(b) show FFMA’s through-
put and latency when its control code varies from 0 to 255.
After 0x20, both the throughput and latency show obvious
periodicity. For each period, by increasing the value of bits
0-3, FFMA throughput drops, and its latency increases at dif-
ferent rates. This phenomenon implies that bits 0-3 indicate
the number of stall cycles before issuing the next instruc-
tion. Our microbenchmarking reveals some specific patterns
of control codes:

• When the control code is set to 0x00, the scheduler sus-
pends a warp of instructions for 16 cycles.
• 0x2n means a warp is suspended for n cycles before

issuing the next instruction, where n = 0, 1, . . . , 15.
• 0x20 means the single-issue mode, while 0x04 means the

dual-issue mode. When two consecutive instructions are
controlled by 0x04 and 0x05, the throughput could reach
its maximum.

Observation 3–[Arithmetic Throughput]: With a proper
control code pattern and register allocation, FFMA instruc-
tion throughput could approach its theoretical peak in dual-
issue mode.

It’s very intricate to tune the efficiency of FFMA through-
put on Kepler due to the dual-issue mode. Previous work [16]
reports the maximal FFMA throughput per SM as 132, which
is only 68.75% of the theoretical throughput. Our mi-
crobenchmarks reveal several key points of tuning FFMA
throughput to 97% efficiency. First, the control codes must
be set properly to dual issue adjacent instructions. Second,
the ratio and interval of dual issued FFMA instructions must
be tuned into a specific pattern. Third, the first instruc-
tion of the core loop needs to be aligned by 8 instructions
(seven normal instructions plus one scheduling instruction).
This restriction is caused by the control code pattern in the
seven normal instruction sequences. Finally, each FFMA re-
quires three source registers; thus, in dual-issue mode, two
FFMAs require six source registers. However, a Kepler GPU
only provides four register banks. The instruction order
must be adjusted to use Kepler’s operand collector mech-
anism [7, 26] to avoid register bank conflicts.

Figure 3 illustrates the mapping of FFMA instructions to
CUDA cores in dual-issue mode on one SM. There are
32 × 6 = 192 cores on one SM; among them, 32 cores are
shared by two warp schedulers, and four warp schedulers
are available for each SM. In single-issue mode, each warp
scheduler can issue one float instruction to 32 cores per cy-
cle, which yields 4 × 32/192 = 66.67% float computation
efficiency. In dual-issue mode, two warp schedulers must
use the shared cores alternately to avoid resource conflicts.
The jagged white and gray blocks in Figure 3 show a proper
phase shift between the executing pace of two warps to get
access to the shared computing units in turn. The theoreti-

cal optimal ratio of dual-issue to single-issue is 2 : 2,
(
4
2

)
= 6 combinations for mixed single-issue and dual-issue pat-
tern inside a 7-instruction scheduling block (Figure 2(c)).
We choose the best 1-2-2-1 pattern for our SGEMM im-
plementation. As shown in Table 4, these optimizations to-
gether improve FFMA throughput to 186 ops/cycle, which is
very close to the theoretical peak 192 ops/cycle.
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Figure 3: An illustration of FFMA dual-issue on one SM to achieve
peak throughput

Table 4: Floating-point instruction throughput on Kepler
Inst operation single-issue dual-issue
FFMA c=a*b+c 127.52 186.35
FMUL c=a*b 127.52 186.35
FADD c=a+b 127.52 186.50
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Observation 4–[Memory]: For high memory bandwidth,
shared memory prefers 64-bit load instruction LDS.64 while
global memory prefers texture cached 128-bit load instruc-
tion LDG.128.

Regarding the GPU memory hierarchy, we focus on the
programmer-controllable memory resources, shared mem-
ory and global memory. Different memory access widths
(32-, 64-, or 128-bit) and paths (through L2 or texture cache)
exist on NVIDIA GPUs. Intuitively, a wider load opera-
tion should achieve greater bandwidth. We test the band-
width of shared memory instructions with different widths,
i.e., LDS.32, LDS.64, and LDS.128. The instructions are
arranged to avoid shared memory bank conflicts. Figure 4
compares the sequential memory access bandwidth of the
three instructions by increasing the data volume. LDS.64
achieves the highest bandwidth 137GB/s, which is about
76% of the peak shared memory bandwidth1.

Two paths are used to load data from global memory,
through the L2 cache by a LD instruction or the texture
cache by a LDG instruction. We launch 26 thread blocks each
with 512 threads, and specify that each thread accesses four
words in a stride of 4 × blockDim.x × gridDim.x. The
total accessed global memory is 256MB. We benchmark that
a LDG.128 achieves 131GB/s, while LD.128 only achieves
76GB/s.
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4. Optimizing SGEMM
The understanding of GPU microarchitectural features pro-
vides us with a larger tuning space for computational ker-
nels. We apply a series of incremental optimizations to im-
prove SGEMM performance on the Kepler architecture. The
optimization strategies go through the architectural hierar-
chy from CUDA cores and registers to memory. All the opti-
mization strategies are inspired by the observations from the
benchmarking in Section 3.3.

• At the GPU core level, we promote FFMA instruction
throughput to approach its peak through dual-issue by
setting proper control codes.
• At the register level, we meticulously map operands to

registers to avoid bank conflicts in the inner loop of
Algorithm 1.

1 The theoretical shared memory bandwidth of an SM is calculated as
Bandwidth = fcore ×Width ×Warpsize in bytes, where fcore is
the core frequency, Width is the width of each shared memory bank.

• At the memory level, we select the appropriate shared
memory load/store width and global memory data path
to achieve high bandwidth.

4.1 Register Allocation
To allocate registers for A column, B row, and C ma-
trix block as in Algorithm 1, we have three objectives:
correctness, no bank conflict, and tight register indices.
LDS.128 restricts four-word alignment for registers. Since
the NVIDIA GPU does not have a 128-bit register, four con-
secutive 32-bit registers RN, RN+1, RN+2, and RN+3 will be
an equivalence for a 128-bit register, where N is a register
index. We discover an undocumented restriction that N must
be divisible by 4; otherwise, illegal instruction errors will be
reported. The four-word alignment restriction for LDS.128
simplifies hardware logic and cuts down power. Since we
use LDS.128 to load A and B, there are two bank allocation
choices under this restriction and Kepler’s bank distribution
(Table 3). We use four colors to represent the four banks and
show the register allocation when computing a 12×12 block

of C in Figure 5. We assume allocating banks of A as
[
0
1

]
,

banks of B as
[
2 3

]
as in Figure 5, and two choices remain

for C,
[
1 2
3 0

]
and

[
3 1
0 2

]
. The 2× 2 = 4 bank patterns of

SGEMM are equivalent in performance. Then, we arbitrarily

choose
[
0
1

] [
2 3

] [1 2
3 0

]
for A, B, and C, respectively.

For actual register index allocation, we choose continuous
register indices to avoid exceeding 255. Every matrix block
Cij , column Ai, and row Bj have different banks in Fig-
ure 5; thus, register bank conflicts are completely avoided.
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Figure 5: Register allocation in SGEMM. Every number in a cell
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4.2 FFMA Dual-Issue
It is unrealistic to keep warp schedulers dual issuing the
same kind of arithmetic instructions (e.g., FFMA) all the time.
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Figure 6: FFMAs instruction scheduling to compute a 12×12 block
of C. The numbers in cells denote the FFMA execution order. Dashed
ellipses across two adjacent cells indicate that two adjacent FFMA
instructions are dual issued in one clock cycle.
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Figure 7: A comparison of compiler generated codes and our tuned
assembly codes.

On a Kepler GPU, each warp is privately assigned 32 cores,
and four warp schedulers consume 128 cores. The remain-
ing 192 − 128 = 64 cores are divided into two 32-core
groups; each group of 32 cores is shared by two warp sched-
ulers. Two warp schedulers need to negotiate for the extra 32
shared cores to avoid resource conflicts. As noted from Ob-
servation 3 in Section 3.3, the best pattern of FFMA instruc-
tions block is a sequence of one single-issue (1 FFMA), two
dual-issues (4 FFMAs), and another single-issue (1 FFMA). As
shown in Figure 7, the instructions in lines 3-4 and lines 6-7
are dual issued separately. The other two instructions in line
8 and line 11 are two single-issues in terms of floating-point
instruction execution. In contrast, most of the FFMAs are sin-
gle issued in the CUDA compiler generated codes.

By extending the basic 7-instruction block (Section 3.3),
we depict the scheduling pattern when computing a 12× 12
block of matrix C in Figure 6. The FFMA to calculate C00

is issued first, then two FFMAs to compute C10 and C11 are
simultaneously issued.

Another advantage of this execution order is less register
pressure due to register reuse by facilitating the operand
collector mechanism [7]. The operand collector allows
operands to be cached and reused in subsequent instruc-
tions. The assembly code in Figure 7 lists the instructions
calculating C32, C22, C21, C30, C31, C20 which correspond
to the orders of 6, 7, 8, 9, 10, 11 in Figure 5. With the elabo-

rately designed computing order and register allocation, the
reuse happens as follows. The FFMA in Line 3 uses cached
operand R150 of Line 2, while Line 3 and Line 4 share R146.
Thus, in the dual-issue mode, FFMAs of Line 3 and 4 need to
read four registers R146, R27, R149, R6 instead of six. The
corresponding banks of these registers are 0, 1, 3, 2 based on
Table 3, so no bank conflicts occur. Similarly, Line 7 uses
the cached operand R149 from Line 4. In dual-issue mode,
two FFMAs of Line 6 and Line 7 need to read 4 registers
R148, R147, R7 and R2.

4.3 Schedule non-FFMA Instructions
After setting the order of FFMAs, non-FFMA instructions need
to be inserted in proper positions to ensure correctness with-
out losing performance. To tolerate instruction latency, the
distance of dependent instructions needs to be larger than
their latency. The distance is approximated as

distance =
4×#instructions

7
. (2)

A 7-instruction scheduling block costs four clock cycles in
dual-issue mode. Therefore, given the distance L of two in-
terleaved instructions, at least L∗7

4 instructions are needed.
In addition, the number of the rest slots to insert these
non-FFMA instructions is estimated as

#slots =
rx × ry × bk

ffmas_in_schedule_block
=

12× 12× 4

6
= 24× 4.

rx×ry×bk yields the total number of FFMAs for one thread
inside the innermost loop in Algorithm 1, where rx and ry
are register blocking sizes and bk is the unrolling factor.
ffmas_in_schedule_block is the number of FFMA instruc-
tions of one scheduling block, which is six by the 1-2-2-1
dual-issue pattern in Section 3.3. According to these princi-
ples, we first arrange LDS, STS, LDG because of their long
latencies. The schedule slots are illustrated in a table. Note
that we use double-buffering to hide the LDG latency from
global memory, which is around 120 clock cycles. Every
four loops require two LDGs to load data from global mem-
ory to registers, and four STSs to store data from registers to
shared memory. A read after write (RAW) dependency ex-
ists between LDG and STS. From Equation 2, 120×7

4 = 210
instructions are needed between them. We put LDG and STS
in position P [77][3] and P [65][2], respectively, in Table 5.
Thus, the in-between 143−77+144×2+65 = 419 (> 210)
instructions are enough to hide the latency of LDGs.

The arrangement of LDS instructions, which load data
from shared memory for double buffering A and B, follows
the same approach with LDGs. The LDS latency is 28 clock
cycles; thus, 28×7

4 = 49 instructions are needed to interleave
a LDS and an FFMA. In Table 5, LDS in P [11][3] reads data
from STS in P [65][2]; the distance between them is more
than 28 cycles. At the end, a BAR.SYNC is inserted after STS
but before LDS to make sure that data in shared memory is
ready. Other instructions such as XOR, IADD, and ISETP are
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inserted according to data dependency; they do not influence
the performance because of their short latencies.

Table 5: The position table of non-FFMA instructions. The inner-
loop is unrolled four times. The first column records slot numbers,
and the first row represents iteration numbers.

slot

unroll
0 1 2 3

5 ISET P0 IADD A0 XOR smB
11 LDS.64 smA LDS.64 smA LDS.64 smA LDS.64 smA
17 LDS.64 smA LDS.64 smA LDS.64 smA LDS.64 smA
23 LDS.64 smA LDS.64 smA LDS.64 smA LDS.64 smA
29 LDS.64 smA LDS.64 smA LDS.64 smA LDS.64 smA
35 IADD K, -4 IADD A1 TEXDEPBAR
41 LDS.64 smB LDS.64 smB LDS.64 smB LDS.64 smB
47 LDS.64 smB LDS.64 smB LDS.64 smB LDS.64 smB
53 LDS.64 smB LDS.64 smB LDS.64 smB LDS.64 smB
59 LDS.64 smB LDS.64 smB LDS.64 smB LDS.64 smB
65 STS.64 writeS ISETP P2
71
77 IADD B0 LDG A
83 LDS.64 smA LDS.64 smA LDS.64 smA LDS.64 smA
89 ISETP P3
95 LDS.64 smA LDS.64 smA LDS.64 smA LDS.64 smA
101 STS.64 loadB0 LDG B
107 STS.64 loadB2 XOR writeS
113
119 LDS.64 smB LDS.64 smB LDS.64 smB LDS.64 smB
125 XOR smA
131 LDS.64 smB LDS.64 smB LDS.64 smB LDS.64 smB
137
143 IADD B1 BAR.SYNC BAR Loop

4.4 Memory Movement
According to our benchmarking observations, we use LDG.128
to load data from texture cached global memory and LDS.64
to load data from shared memory. Additional reasons to
adopt them in SGEMM kernel are as follows: First, LDG.128
reduces load instructions, and hence reduces non-FFMAs. In
the inner loop of Algorithm 1, we need three LDG.128s in-
stead of twelve LDG.32s to read twelve words from a column
of A . Second, the shared memory transaction size of a warp
is at most 256 bytes, which forces LDS.128 memory re-
quests to be split into multiple transactions. As we analyzed
in Section 5, LDS.128 has a lower bandwidth than LDS.64,
which bounds the SGEMM performance.

5. Evaluation
In this section, we compare the performance of our opti-
mized SGEMM with NVIDIA cuBLAS. Then, we present
quantitative analysis on the effect of each optimization strat-
egy and an estimation of the performance upper bound using
a roofline model.

The experiments are conducted on an NVIDIA Tesla
K20m GPU (refer to [20] for detailed specifications). We
compare cuBLAS from CUDA 7.0 by testing both square
matrices and rectangle matrices. The size of the square ma-
trices varies from 384 to 12288 with a step 384. The smallest
dimension of the rectangle matrices varies from 192 to 3072
with a step 192.

5.1 Overall Performance
We use [M , K, N ] to denote size of matrix A to be M ×K
and size of matrix B to be K × N . Figure 8 shows the

SGEMM performance of five different matrix shapes, [W ,
W , W ], [W , 2W , 4W ], [W , 4W , W ], [4W , W , 4W ], and
[4W , 2W , W ], where the values of W are shown on the
x-axis. The results demonstrate that our 12 × 12 and 8 × 8
register blocking implementations are better than cuBLAS
in most cases. While 12×12 is the best one when the matrix
size is greater than 1000, and 8 × 8 blocking is better when
the matrix size is small. The performance of both cuBLAS
and our SGEMM for the matrix shape [W , 4W , W ] fluc-
tuates more seriously than other shapes because its paral-
lelism is coarser, and each thread iteration is much longer
(K = 4W ). In contrast, [4W , W , 4W ], with the finest par-
allelism of the four shapes, has the smoothest results. When
the matrix size is 12288 × 12288, the optimized SGEMM
achieves 3.1 Tflop/s with 88% efficiency, while cuBLAS
gets 2.7 Tflop/s with 76% efficiency. Our SGEMM achieves
a 1.15× performance speedup over cuBLAS. SGEMM per-
formance increases with matrix size. One reason is that a
larger matrix has a higher ratio of floating-point operations
to the store operations of matrix C.Another reason is that a
larger matrix has a better load balance on GPU because of
the increase in the workload of each CUDA core. The num-
ber of thread blocks ranges from 2 × 2, 8 × 8, . . . , 64 × 64
from left to right in Figure 8. Since Kepler has 13 SMs, ma-
trix 384 × 384 suffers more from load imbalance because
there are only 4 thread blocks. This explains the signifi-
cant performance improvement when the size grows from
384 to 1536. With respect to the performance improvement
over cuBLAS, our optimizations benefit more from larger
matrices. The higher arithmetic intensity of larger matrices
makes their performance increasingly bounded by the GPU
microarchitecture rather than its memory hierarchy. There-
fore, our microarchitecture-level optimization plays an im-
portant role in tuning SGEMM performance.

5.2 Performance Analysis
5.2.1 Influence of Register Blocking Sizes
Table 1 summarizes the data movement volume of the
blocked SGEMM algorithm. The volume of data moving
from shared memory to register is rx × bk + ry × bk, and
the floating-point computation volume is rx × ry × bk. The
shared memory arithmetic intensity (sAI) is defined as the
ratio between them:

sAI =
rx × ry × bk

rx × bk + ry × bk
=

1
1
rx

+ 1
ry

. (3)

Register blocking sizes rx and ry are limited by the register
counts per thread. Each thread needs rx × ry , 2 × rx and
2 × ry registers to store the result of a matrix block of C,
two columns of A (double-buffering), and two rows of B
(double-buffering), respectively, in one single iteration of the
innermost loop in Algorithm 1. Since the total number of
registers must be less than the maximum register counts per
thread (256 on Kepler), we have

rx × ry + 2rx + 2ry < 256. (4)
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Figure 8: Performance comparison of cuBLAS and the optimized SGEMM on different matrices

Equation 3 implies that larger register blocking yields a
higher shared memory arithmetic intensity, and the optimal
solution lies at rx = ry with restriction by Equation 4.
We use 8 × 8 and 12 × 12 blockings as a case study. In
Figure 8, 12 × 12 blocking has better performance than
8 × 8 blocking because 12 × 12 blocking has higher sAI
and instruction level parallelism. With respect to instruction
scheduling optimization in Table 5, it has more slots to insert
non-FFMA instructions, and latency can be better hidden.
12 ∗ 12 + 4 ∗ 12 = 192 registers are used by LD and FFMA
instructions, and a total of 236 registers with other address
indices. The register counts per SM restricts us to launch
up to 256 threads/block, which is in our implementation.
Each thread block computes a matrix block C192,192 by
multiplying A192,4 and B4,192, where 4 is the unrolling
factor.

Only one thread block per SM is active due to regis-
ter limitation; thus, the thread occupancy is 256/2048 =
12.5%. With higher instruction level parallelism by using
larger register blocking, the thread parallelism becomes low.
However, the high performance of our SGEMM confirms
that instruction level parallelism also plays an important role
in GPU performance. A similar conclusion is offered by
Volkov in [28].

5.2.2 Profiling Microarchitectural Optimizations
To examine the performance gains of different optimiza-
tion strategies, we construct several intermediate implemen-
tations by incrementally applying our microarchitectural op-
timizations.

Baseline: The baseline has adopted conventional op-
timizations including register blocking, global and shared
memory double bufferings, and unrolling, although without
the assembly level optimizations. For example, the baseline
uses default 32-bit LD rather than 128-bit LDG instructions to
load data from global memory. Registers are allocated first
for C from 0 to 143, then for A and B. In this case, FFMAs
have 368/(144 ∗ 4) = 63.89% 2-way bank conflicts and
64/(144 ∗ 4) = 11.11% 3-way bank conflicts. In addition,
the baseline cannot apply dual-issue optimization either.

+Reg: The register allocation pattern described in Sec-
tion 4.1 is applied to eliminate register bank conflicts.

+LD128: Use wide global load instruction LD.128 with
L2-cached. Although Kepler has an L1 data cache, it is
designed for local rather than global memory access [20].

+LDG128: Use the faster texture cached LDG instead of
L2-cached LD along with TEXDEPBAR before data access due
to the weak consistency of the texture cache [17].

+Dual: Use the dual-issue control fully enabled by uti-
lizing the pattern described in Section 3. In dual-issue mode,
NOP may be inserted for 7-instruction alignment.

Figure 9 shows the performance gains of each opti-
mization strategy. As long as the number of instructions
changes, instruction rescheduling is necessary to achieve
good performance. Compared with the baseline implemen-
tation, SGEMM can achieve a 2.6× speedup by applying
all the optimizations. The elimination of register bank con-
flicts leads to performance improvement of approximately
10%. Wide load instruction LD.128 contributes 27%-35% to
performance, and texture-cached load instruction LDG.128
leads to an improvement of 5%-12%. Dual-issue achieves
the highest performance improvement with 84%-106%.
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Figure 9: Evaluation of incremental optimizations.

5.2.3 Bounding Factor Analysis
We estimate the upper bound factors: shared memory, global
memory, and computation power. In the innermost loop of
Algorithm 1, each thread block computes bm × bn × bk
operations and reads bm × bk + bn × bk words. The upper
bound of SGEMM by global memory bandwidth can be
modeled as:

2× bm × bn × bk
4(bm × bk + bn × bk)

≥ PeakF lops

Bandwidthglobal
(5)

According to the parameters in our SGEMM implementa-
tion, bm = bn = 192, bk = 4, PeakF lops = 3520Gflop/s,
so 73GB/s is the minimum requirement for the global mem-
ory bandwidth to achieve the theoretical peak of 3520Gflop/s.
Inside each loop, (rx×bk+ry×bk)×tx×ty words are read
from shared memory, where tx and ty are thread block sizes,
and rx and ry are register blocking sizes. The computation
flops is bm×bn×bk; thus, the ratio of computation to shared
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memory access is

2× bm × bk × bn
4tx × ty × (rx × bk + ry × bk)

≥ PeakF lops

Bandwidthshared
(6)

The minimum shared memory bandwidth requirement
of SGEMM is 1173GB/s on the Tesla K20m, which is
1173/13 = 90GB/s for each SM. Theoretically, hard-
ware provides 200GB/s of global memory bandwidth and
2349GB/s of shared memory bandwidth, both of which are
higher than the requirements; hence, neither of them are the
bottleneck.

SGEMM has a different computation to memory access
ratio in terms of global memory and shared memory, so we
demonstrate two roofline models in Figure 10. The slant line
in Figure 10(a) represents attainable performance with dif-
ferent arithmetic intensities when bounded by global band-
width. The x-axis represents the flops:bytes ratios, which are
48 for 192×192 and 32 for 128×128 shared memory block-
ing of SGEMM based on Equation 5. Horizontal lines show
the machine’s peak performance and the performance of our
optimized SGEMM with or without dual-issue. This figure
demonstrates that SGEMM is not bounded by global mem-
ory bandwidth for either 128 × 128 or 192 × 192 shared
memory blockings. The slant line in Figure 10(b) represents
attainable performance with different arithmetic intensities
when bounded by shared memory bandwidth. The x-axis
represents the flops:bytes ratios, which are 3 for 12 × 12
and 2 for 8×8 register blocking of SGEMM based on Equa-
tion 6. This figure shows SGEMM is not bounded by shared
memory through our LDS optimization. However, if we use
LDS.128 instead of LDS.64, SGEMM will be bounded by
shared memory even for 12× 12 blocking.
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Figure 10: Memory roofline model using log-log scale. “GM/SM
Bandwidth” indicates global/shared memory’s theoretical band-
width.

The loss of peak performance can be explained as fol-
lows. As we have shown in Section 3, FFMA throughput can
achieve 97.67% efficiency. The loss is about 2.33%, which
may be the result of overhead of the warp scheduler in FFMA
dual-issue mode. The double-buffering algorithm can amor-
tize the latency of LDS. With 12 × 12 register blocking and
unrolling of 4, there are 144 ∗ 4 = 576 FFMAs in the loop.
With our designed FFMA dual-issue pattern, every six FFMAs
need four clock cycles in the pipeline. The innermost loop

needs 4× 144× 4/6 = 384 cycles for each thread, and two
LDG.128s are also needed. We observe that each LDG has 10
cycles of penalty; the total LDG causes a 2×10/384 = 5.2%
loss. Other penalties may be caused by synchronization and
writing C matrix in the block.

6. Generality
Although this paper examines the methodology on GPU Ke-
pler architecture and shows performance optimizations for
SGEMM, we argue that the developed toolchains can be eas-
ily extended to other NVIDIA GPUs and that the explored
optimization strategies are applicable to other floating-point
computation-intensive applications.

Portability of Toolchains: For a particular GPU architec-
ture, users only need to regenerate disassembly codes from
the PTX samples and microbenchmarks with CUDA binary
utilities and then feed them to the ISA encoding solver. The
opcode, modifier, and operand solvers are portable among
GPU architectures. We have validated the solver functional-
ities on the Fermi, Kepler, and Maxwell GPUs [33]. A cor-
responding assembler can be obtained by modifying the in-
struction grammar definition decoded by the solver, which
could be done automatically with an assembler template [4].

Generality of Optimization Methods: The optimiza-
tion strategies include FFMA dual-issue, register allocation,
memory load/store width, and instruction scheduling. Note
that the bare-metal tunings are more microarchitectural spe-
cific than application specific. With the support of assem-
bly, our scheduling optimization is totally derived from in-
struction dependency and latency, which is not specific to
SGEMM. With a proper blocking algorithm, multiple float
computation instructions reside in a single loop iteration;
then, register allocation and dual-issue optimization can be
used to improve floating-point computation throughput.
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Figure 11: Performance comparison of cuDNN and our optimized
convolution on GPU Tesla K20m (batch size is 128).

Applying Optimizations to Convolution Algorithm:
Our convolution algorithm implementation uses 128 × 128
shared memory blocking and 8×8 register blocking. We op-
timize it at the assembly level by using the method described
in section 4. We benchmark three popular convolutional neu-
ral networks: Alexnet [15], Vgg [24], and Overfeat [23]. The
configuration of each convolutional layer can be found in
corresponding papers. Figure 11 presents the performance
of our optimized convolution and cuDNN by comparing the
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average performance of all the convolutional layers in a neu-
ral network. Our optimized convolution implementations are
39%, 46%, and 62% higher than cuDNN V4.0 for the three
CNN configurations respectively on Tesla K20m.

7. Related Work
This section briefly discusses related work in reverse engi-
neering ISA encoding, GPU assembler, microbenchmarking,
and SGEMM optimization.

ISA Encoding Solver and GPU Assembler: CPU ISA
encoding reverse engineering work [8, 13] broadly exists
by using a MIPS, SPARC, Alpha, PowerPC, ARM, or x86
assembler to crack CPU instruction sets and extract bit-
level instruction encoding information. These works output
C declarations that can be used by binary tools. However,
NVIDIA does not have an available GPU assembler, but
a disassembler instead. The lack of a GPU assembler for
public use makes our reverse engineering on GPUs more
meaningful.

The absence of a GPU assembler motivates a series of
works that develop toolchains to facilitate tuning codes at
the assembly level. For the early architecture G80, De-
cuda [27] demonstrated the feasibility of operating assembly
instructions. After that, for almost every generation of GPU
architecture, there are several efforts to develop assembly
toolchains. Asfermi [12], and cudaasm-qhasm [5] are assem-
blers for the Fermi architecture, and MaxAs [10] assembler
is for the Maxwell architecture. Envytools [1] supports the
translation of PTX instructions to 64-bit binaries for several
GPU architectures; it is not able to generate a compatible
cubin that can be directly used by the CUDA driver APIs.
Although all their work involves reverse engineering GPU
ISA encodings, detailed descriptions are not provided nor is
a general tool developed to crack a new GPU ISA encoding.
We provide a general toolchain to automatically crack dif-
ferent GPU ISA encodings and an assembler for the Kepler
architecture.

Benchmarking: Fog [9] did sound work on benchmark-
ing instruction latency and throughput of several generations
of Intel and AMD CPUs, and Intel Xeon Phi accelerators.
Wong et al. [31] performed a comprehensive benchmark-
ing study on GT200 and provided pipeline latency data and
memory features. Mei et al. [18] benchmarked memory hier-
archy including cache, and shared memory on Fermi, Kepler,
and Maxwell GPUs. However, they did not benchmark the
dual-issue mode of arithmetic instructions or vectorized load
instructions such as LD and LDS, which leaves non-negligible
unexplored performance space. We leverage the complete
assembler to crack control codes that reveal more microar-
chitecture details for tuning application performance.

Matrix Multiplication Tuning: With respect to GEMM
optimization in the microarchitectural level, some work in-
spires our GPU implementations. Tan et al. [25] imple-
mented a fast DGEMM by using assembly-level optimiza-

tion, such as software pipelining, vector memory operations,
and instruction scheduling. Lai et al. [16] presented perfor-
mance analysis and optimization work of SGEMM on both
Fermi and GTX680 GPUs. Gray [11] presented SGEMM
optimization in assembly on a Maxwell GPU. We adopt
the proved effective optimization techniques such as shared
memory/register blocking and double-buffering [25, 29].
However, it is difficult to tune all possible microarchitectural
optimizations well without a useful toolchain. In this work,
we present a complete case study of applying microarchitec-
tural features by combining register allocation, dual issuing,
memory access paths, and instruction scheduling by using
our toolchains.

8. Conclusion
We presented a methodology to understand GPU microar-
chitectural features and demonstrated its application on tun-
ing SGEMM and convolution algorithms. The methodology
includes a GPU ISA solver to crack its ISA encoding, a GPU
assembler, and microbenchmarks at the assembly level to
correlate architectural features with performance. Based on
the disclosed insights, we implemented the fastest SGEMM,
3.1Tflop/s with 88% efficiency on an NVIDIA Tesla K20m,
which is 15% faster than cuBLAS. We also build roofline
models to analyze its performance upper bound. Applying
these optimizations on convolution, the optimized imple-
mentations outperform cuDNN4.0 by 39%-62% on the Tesla
K20m. Our work brings GPU optimizations to a deeper na-
tive machine level, which may shed light on developments
in compilers or other performance-critical kernels. In the fu-
ture, we will apply our methodology to the latest Pascal GPU
to reveal its microarchitectural features. We also intend to
apply our GPU microarchitectural insights and assembly op-
timization to optimize code generation of the open source
GPU compiler GPUCC [32].

Acknowledgments
We would like to thank Prof. Mary Hall and other review-
ers for the very useful comments and suggestions which
help us improve the quality of our paper. This work is
supported by the National Key Research and Development
Program of China (2016YFB0201305, 2016YFB0200504,
2016YFB0200803, 2016YFB1000400), National 863 Foun-
dation of China (2015AA01A301, 2015AA015303), Na-
tional Natural Science Foundation of China, under grant
no. (91430218, 31327901, 61472395, 61272134, 61432018,
61521092), the joint deep learning lab of Institute of Com-
puting Technology and Sugon, and CAS Holdings.

References
[1] Envytools. https://github.com/envytools/

envytools.

[2] AMD. clMath. https://github.com/clMathLibraries.

[3] ACML AMD. AMD Core Math Library (ACML), 2014.

42



[4] Alexandro Baldassin, Paulo Cesar Centoducatte, and Sandro
Rigo. Extending the archc language for automatic genera-
tion of assemblers. In 17th International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-
PAD’05), pages 60–67. IEEE, 2005.

[5] Daniel J Bernstein, Hsieh-Chung Chen, Chen-Mou Cheng,
Tanja Lange, Ruben Niederhagen, Peter Schwabe, and Bo-Yin
Yang. Usable assembly language for GPUs: a success story.
IACR Cryptology ePrint Archive, 2012:137, 2012.

[6] Lung-Sheng Chien. Hand tuned SGEMM on GT200 gpu.
Technical report, Tech. rep., Department of Mathematics, Ts-
ing Hua University, Taiwan, 2010.

[7] Jack Hilaire Choquette, Manuel Olivier Gautho, and John Erik
Lindholm. Methods and apparatus for source operand collec-
tor caching, January 28 2014. US Patent 8,639,882.

[8] Christian S Collberg. Reverse interpretation+ mutation anal-
ysis= automatic retargeting. In ACM SIGPLAN Notices, vol-
ume 32, pages 57–70. ACM, 1997.

[9] Agner Fog. Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD
and VIA CPUs. Denmark (Lyngby): Technical University of
Denmark, 2012.

[10] Scott Gray. MaxAs. https://github.com/
NervanaSystems/maxas.

[11] Scott Gray. NervanaGPU. https://github.com/
NervanaSystems/maxas/wiki/SGEMM.

[12] Yunqing Hou. AsFermi. https://code.google.com/
archive/p/asfermi/wikis.

[13] Wilson C Hsieh, Dawson R Engler, and Godmar Back.
Reverse-engineering instruction encodings. In USENIX An-
nual Technical Conference, General Track, pages 133–145,
2001.

[14] MKL Intel. Intel Math Kernel Library, 2007.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pages
1097–1105, 2012.

[16] Junjie Lai and André Seznec. Performance upper bound
analysis and optimization of sgemm on Fermi and Kepler
GPUs. In Code Generation and Optimization (CGO), 2013
IEEE/ACM International Symposium on, pages 1–10. IEEE,
2013.

[17] M. Lukyanov, B. Beylin, R.S. Glanville, and A. Grosul. Ef-
ficient placement of texture barrier instructions, February 20
2014. US Patent App. 13/590,075.

[18] Xinxin Mei, Kaiyong Zhao, Chengjian Liu, and Xiaowen Chu.
Benchmarking the memory hierarchy of modern GPUs. In
Network and Parallel Computing, pages 144–156. Springer,
2014.

[19] R Nath, S Tomov, and J Dongarra. An improved MAGMA
GEMM for Fermi GPUs, university of tennessee computer
science technical report. Technical report, UTCS-10-655,
July, 2010.

[20] Nvidia. Nvidias next generation CUDA compute architecture:
Kepler GK110, the fastest, most efficient HPC architecture

ever built. White Paper, 2012.

[21] NVidia. CUDA binary utilities. September 2015.

[22] NVIDIA. Parallel thread execution ISA v4.3. http://docs.
nvidia.com/cuda/parallel-thread-execution/
#axzz42f7ftJVy, September 2015.

[23] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Math-
ieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated recog-
nition, localization and detection using convolutional net-
works. arXiv preprint arXiv:1312.6229, 2013.

[24] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[25] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips,
Yungang Bao, and Ninghui Sun. Fast implementation of
dgemm on fermi gpu. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, page 35. ACM, 2011.

[26] D. Tarjan and K. Skadron. Policy based allocation of register
file cache to threads in multi-threaded processor, June 12
2012. US Patent 8,200,949.

[27] Wladimir J. van der Laan. Decuda. https://github.com/
laanwj/decuda.

[28] Vasily Volkov. Better performance at lower occupancy. In
Proceedings of the GPU technology conference, GTC, vol-
ume 10, page 16. San Jose, CA, 2010.

[29] Vasily Volkov and James W Demmel. Benchmarking GPUs to
tune dense linear algebra. In High Performance Computing,
Networking, Storage and Analysis, 2008. SC 2008. Interna-
tional Conference for, pages 1–11. IEEE, 2008.

[30] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi.
Augem: automatically generate high performance dense lin-
ear algebra kernels on x86 cpus. In Proceedings of the Inter-
national Conference on High Performance Computing, Net-
working, Storage and Analysis, page 25. ACM, 2013.

[31] Henry Wong, Misel-Myrto Papadopoulou, Maryam
Sadooghi-Alvandi, and Andreas Moshovos. Demystify-
ing GPU microarchitecture through microbenchmarking. In
Performance Analysis of Systems & Software (ISPASS), 2010
IEEE International Symposium on, pages 235–246. IEEE,
2010.

[32] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan,
Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer,
Xuetian Weng, and Robert Hundt. gpucc: an open-source
GPGPU compiler. In Proceedings of the 2016 International
Symposium on Code Generation and Optimization, pages
105–116. ACM, 2016.

[33] Xiuxia Zhang. KeplerAs. https://github.com/
PAA-NCIC/PPoPP2017_artifact.

43




