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Abstract

Dynamic programming has been one of the most efficient ap-
proaches to sequence analysis and structure predictioiologk.
However, their performance is limited due to the drasticéase

in both the number of biological data and variety of the cotapu
architectures. With regard to such predicament, this peyeates
excellent algorithms aimed at addressing the challengesbv-

ing memory efficiency and network latency tolerance for eoias
polyadic dynamic programming where the dependences argiton

DP formulations as a directed graph and classify them intw fo
classes of DP formulation: serial monadic (single soura@teht
path problem, 0/1 knapsack problem), serial polyadic (&lajt
pairs shortest paths algorithm), nonserial monadic (Ilshgem-
mon subsequence problem, Smith-Waterman algorithm) and no
serial polyadic (optimal matrix parenthesization probldmmary
search tree and Zuker algorithm). In the previous classifieathe
term serial/monadic represents uniform data dependemddsh
has been studied extensively and optimized efficiently ameot
architectures in the last decade. All DP of this kind are istae
problems where there are only two sets dependences dueldthe

form. By relaxing the nonuniform dependences, we proposed a recyrrences: in the stages themselves and among the ctimsecu

new cache oblivious scheme to enhance its performance omrgem
hierarchy architectures. Moreover we develop and exterilihg t
technique to parallelize this nonserial polyadic dynamimgpam-
ming using an alternate block-cyclic mapping strategy falahc-
ing the computational and memory load, where an analytiaal p
rameterized model is formulated to determine the tile vasize
that minimizes the total execution time and an algorithméms-
formation is used to schedule the tile to overlap commuitinat
with computation to further minimize communication oveatieon
parallel architectures. The numerical experiments wengechout

stages only. The term nonserial polyadic represents ththano
more complicated family of DP problems whose dependencaes ar
nonuniform, specifically, new dependences appearing among
consecutive stages are observed are observed besidespére de
dences mentioned above.

In order to focus on nonuniform dependences analysis, weyfies
a general formulation for this nonserial polyadic DP altjori. De-
rived from DP formulation in RNA secondary structure préidic
algorithm and optimal matrix parenthesization problem prnesent

on several high performance computer systems. The new <ache an abstract DP formulation 1, wheaé) is the initial value.

oblivious dynamic programming algorithm achieve 2-10 siope
and the parallel tiling algorithm with communication-coutgtion
overlapping shows a desired potential for fine-grainedljgdi@om-
puting on massively parallel computer systems.

Keywords: dynamic programming, cache-oblivious, tiling, local-
ity, parallelism

1 Introduction

Dynamic programming (DP) is a common technique to solve a
wide variety of discrete optimization problems such as dahe
ing, string editing, packaging and inventory managemenbreM
recently, researchers have extended its applicationsetaehlm

of bioinformatics. For instance, the Smith-Waterman [®naibhd
Waterman 1981] algorithm for matching sequences of amaidsa
and necleotides, Zuker's [Lyngso and Zuker 1999] algorifiom
predicting RNA secondary structures. In many DP algoritlem r
searches, it is considered as a class of multistage probferama,
etal. [A. Grama and Kumar 2003] model the dependences in

The work is supported by Youth Fund of ICT,CAS(20056600z24d)
NNSF of China(60573163)
Permission to make digital or hard copies of all or part ofsthwork for
personal or classroom use is granted without fee provided topies are
not made or distributed for profit or commercial advantagel d&mat copies
bear this notice and the full citation on the first page. Toyogtherwise, to
republish, to post on servers or to redistribute to listgjuies prior specific
permission and/or a fee. SC2006 November 2006, TampadalddSA.
0-7695-2700-0/0620.00 2006 IEEE

min << {mfi, jJ, mfi, K +mk+1, j]}
0<i<ij<n
i=j
In most applications, this formulation as a computatiorainiel
mainly involves float operations (Such as Zuker algorithrd ap-
timal binary trees). However, the standard implementatibthe
nonserial polyadic dynamic programming algorithm canmxpiat
a reasonable fraction of the floating point peak performarficgir-
rent microprocessors. Even worse, the performance alweayssd
dramatically as size of the problem grows(See Figure 2).

The reason for the disappointing performance is the wedlakm
memory wall [Wulf and McKee 1995] in deep memory hierachy ar-
chitecture. The DP algorithms are easily implemented gs t&sts
iterations, thus, it is also considered as an iteration diafspace
problem [Irigoin and Triolet 1988] for optimizing its lodg and
parallelism. Tiling the iteration domain (loop blockingarition-

ing) [Irigoin and Triolet 1988][Xue 1997b] is a well-knowech-
nique used by compilers and programmers to improve data lo-
cality and to control parallel granularity to increase tloenputa-

tion to communication ratio [Coleman and McKinley 1995][\M¢o
1987][Ramanujam and Sadayappan 1991][Xue and Huang 1998].
However, most of the work on optimal tiling only considersfpet

loop nests with parallelepiped shaped iteration domainuaifdrm
dependences [Xue 1997b][Ramanujam and Sadayappan 12@1][X
1997a][Xue 1997c], and unfortunately it is invalid when d@ntes

to noserial polyadic DP formulation. This paper presented\&l
solution to optimal tiling to triangular iteration domainagnununi-
form dependeces which focus on the nonserial polyadic Diader
lation in Zuker RNA secondary structure prediction aldarit and



the results show our new approach of significant implemimtan
terms of performance.

dp_standard(matrices m, int n)
for(j=Lj<nj++)

for(i=ji>Li——){
indxj = indx[j];
ij = i+indxj;
t=mij];

for (k=1i;k< j;k++)
t=min2(t, m[i+indx[K]]+m[k+1+indxj])
mfij] =t

}

Figure 1: The program for dptandard with vertical traverse
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Figure 2: MFLOPS of a straightforward 3-loops iteration Ilep
mentation of nonserial polyadic dynamic programming atpaor

What has been ignored by previous work is communicationradva
tage that current high performance computer architectanepco-
vide. One of the keys to improve communication performasce i
to overlap communication with computation and remove the bu
den of communication from the main processor. One enabling
technology for this effort is memory mapped network inteels
[M. A. Blumrich and Sandberg 1994] such as Myrinet [N. J. Bode
and Su 1995], Infinband [inf ] and Quadrics [F. Petrini andchta
enberg 2002], which support Virtual Interface Architeet{/IA)

[D. Dunning and Dodd 1998] and Remote Direct Memory Access
(RDMA). In memory-mapped networks, the data can be traresfer
between main memory and the network interface through thets
DMA. This mechanism relieves the host CPU from the respdnsib
ity for moving data from memory and eliminates the need of un-
necessary copying from user buffers to kernel buffers (Zaopy

[F. O. Carroll and Ishikawa 1998]). More aggressively, Bheme/L
[Adiga and et al 2002] provides additional dual-proces#orriode
which handles communication between a compute node and othe
systems, including the host and file servers. Based on th@ inn
vative hardware, various programming environments antesys
softwares also have been developed. In the recent, MPI 200 [m
] has support one-sided communication. Some emergingaexpli
itly parallel programming paradigms using a global addsgssce
model, including UPC [upc ], Titanium [K. A. Yelick and Aiken
1998] and Co-Array Fortran [Numrich and Reid 1998][caf ]; ex
ploit communication-computation overlap through onesdidom-
munication.

The goal of this paper is to develop methods for meeting tblese-
llenges. And previous researches in this filed show thta go-al

rithm in a divide-and-conquer fashion often has better egarfor-
mance than the one in simple iteration because divide-andter
recursively solves subproblems which are small enough ito tfite
cache and in this sense only cache misses that occur in theeDP a
the compulsory misses. Thereby, the algorithm has a goopiderh
locality which consequently can enhance the performan@otfo
certain large extent. In this paper, we propose a cacheiobs
[M. Frigo and Ramachandran 1999] nonserial polyadic dynami
programming algorithm using divide-and-conquer techeicdiso,

a tiling optimization is introduced based on the cache ailiy
algorithmic transformation. In order to exploit commuriioa-
computation overlapping. The new tile scheduling strategylts

in following scene: a processor computes its tilekatme step
and concurrently receives data from other processors tdhese
atk+ 1 time step and sends data produced -atl time step. We
investigate the application of our optimization methodseoveral
modern architectures. All experimental results show thattbtal
execution time is reduced. Our specific contributions afelasvs:

e We have developed a cache-oblivious algorithm for nonkeria
polyadic DP in the first time which runs much faster than
the loop nests iteration implementation on deep memory hi-
erachies.

e We have proposed a new tiled parallel scheme for triangu-
lar iteration domain with nonuniform dependences which can
promise computation and memory workload balance. Be-
sides, We formulated and analytically solved an optimazati
problem to determine the tile volume size that minimizes the
total execution time of the tile parallel algorithm.

e We have proposed a new tile scheduling strategy to exploit
the inherent overlapping between communication and com-
putation among tile executions, then surveyed the appicat
of our schedule to modern communication architecture.

The rest of the paper is organized as follows. In section Zume-
marize the previous work on locality and parallelism opzaton
for DP algorithm. Section 3 discuss our cache oblivious ritiym

aimed to improve the cache performance of nonserial paty@éi

In section 4, we use a tiling approach to develop a parallehlgB-

rithm, then introduce the tile scheduling algorithm to d&prcom-
munication with computation. In section 5, we report expemtal
resutls to validat our claims. Finally, the conclusions aresentd
in section 6.

2 Related Work

A number of groups have been doing research in the area of mem-
ory hierarchy performance analysis and optimizations itemée
years. One of the most successful cases is the optimizafion o
dense numerical computation [J. Demmel 2005][Frigo andh-Joh
son 2005][M. Puschel and Rizzolo 2005]. One characteribtit

all these problems share is very regular memory access velnéch
known in advance at compile time. The SUIF [M. W. Hall and
Lam 1996] compiler framework includes a large set of libeari
for performing data dependency analysis and loop transftioms
such as tiling. However, we should note that the dependeinees
volved in SUIF is different from that of nonserial polyadigramic
programming and SUIF will not perform transformations with
algorithmic intervention. For dynamic programming algjoms,
Venkataraman et al. [G. Venkataraman and Mukhopadhyay3] 200
presented a tiled implementation of the Floyd-Warshalbatgm

and derived an upper bound on achievable speedup of 2 fersftat
the-art architectures. The common feature of these workdhes-
aware, that is, the optimized algorithm contains paramsdsat at



either compile-time or runtime) that can be tuned to optantize
cache complexity for the particular cache size and line.eRty,
cache oblivious algorithms have been proved to be able torotite
same bound of cache misses for many applications [Frigoamt J
son 2005]. Similar to the tile implementation of Floyd-Weza$
algorithm in [G. Venkataraman and Mukhopadhyaya 2003]k Par
et al. [J. S. Park 2004] developed a cache oblivious algarith
and achieved more speedup by combining tiling/blockingnegue
sensitive to cache parameters. From the forgoing analysispted
that the DP algorithm in Floyd-Warshall problem is seridlpdic,
where the dependences are uniform. However nonserial giolya
dynamic programming algorithm poses unique challengesto i
proving cache performance due to their nonuniform depereten
Thereby, optimizations such as tiling can be applied to enak
polyadic DP only after considering the specific details\idlially.
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Figure 3: The blocked DP table. The size i¥ x

', X11, X202, X33, X44 are three triangular matrices,whose size are
/ / . B

% x %, whereXqp, Xq3, X14, X23X04, X34 are six rectangular matri-

ces, whose size afg x 7

R. Andonov et.al. [Andonov and Rajopadhye 1997] first agblie
orthogonal tiling approach to sequence alignment DP alyori
where the tiling problem was considered as a 2D uniform depen
dence iteration space tiling. Their further optmizatiomf@®nov
and Balev 2003] yielded an improvement of a factor of 2.5 over
orthogonal tiling for a sequence global alignment DP athoni

For DP algorithms with nonuniform dependences, the corafit
dependences obviously make the parallelization hardeis bt
surprising that a lot of work has been done in developing an ef
ficient parallel algorithm. Unfortunately, most of previowork
deals with this problem in the context of communication lesst
models. Bradford [Bradford 1992] described several athors
solving optimal matrix chain multiplication parentheginas using

optimize the communication cost. The authors proved expari
tally that the communications took about 50% of the exeautiine
for a sequence with length of more than 9212. In [F. Almeidd an
Gonzalez 2002] the authors described blocked paralleemphta-
tion on a ring of processors and showed the usefulness ofitige t
technique for this nonuniform dependences DP. They focased
reducing the communication costs. However, in [J. H. Cheh an
Maizel 1998] their analytical formulas they didn’t takedrgccount
the value of the startup latency and the processors werenassto
be permanently busy. But for current machines it is an uistial
approximation. In [F. AImeida and Gonzalez 2002] the aighg¥
nored that the computation of each iteration point was wifig so
their algorithm can not attain computation load balanceyTdver-
estimated the benefit of achieving the communication ontyéen
two neighbors and consequently kept the entire iterati@tespn
each processor node. Thereby, this method has unavoidialiie-|
tions on the problem size because of the physical availablaany.

As for how to utilize the enable technology of communication
computation overlap on modern network architectures, bmea
al. [A. Danalis and Swany 2005] presented program transierm
tions in parallel programs which use MPIs collective operat.
However, its transformation targeted uniform dependetezation
domain which is easily implemented as a perfect loop nest.

3 Cache-oblivious Algorithm for Nonserial
Polyadic DP

The most important technique to develop cache-obliviogm-al
rithm is divide-and-conquer. Before presenting the dethile-
cursive divide-and-conquer algorithm, we transform thaatign
1.Assume(i, j) is the original coordinate in the original domain
2 ={(i,])|0<i < j < n}, wheren=|2| is the original prob-
lem size,(i’, j') is the new coordinate in the transformed domain
7' ={({",j)|o<i" < | <n'}, wheren' =n+1=|2'| is the new
problem size. The iteration domain transformation is defiae
follows:

(i",j)=1@j):1"=ij"=j+1

Thus, in the transformed domain formulation 1 is rewritterttze
new formulation 2, whera(i) is the known initial value (the values
on the new diagonal also can be any values).

min’+l§k’<]’{m[i/7 j/}vm[ilv k/} + m[k/7 ]q}

HA HA /
m[i’,j’]: (i) 0<i"<j'<n

2
i'<i+1

Inthe new domain, the entries on the new diagonal do notitorér
to the computation. We claim that except for the unused gadue
the new diagonal in the new domain, the transformed forrian&t
gains the same dynamic programming matrices as the orifginal
mulation 1 in the original domain. In fact, the orignal domé is

the CREW PRAM model. Edmonds et al. [P. Edmonds and George g sybset of the transformed domai, 2 ¢ 2’ which is visualized

1993] and Galil et al. [Galil and Park 1994] presented séywea
allel algorithms on general shared memory multiprocesgsiems.
Another important research is in the systolic frameworkib@s et
al. [L. Guibas and Thomson 1979] focused on designing trikarg
systolic arrays. The main difficulty for obtaining an efficigaral-
lel implementation on distributed memory multicomputeystem

as adding a new diagonal to the original DP matrices(Seerthe g
point along the diagonal in Figure 3

Thus, a recursive divide-and-conquer algorithm is comsidle
within the transformed domaify’. Without loss of generality, as-
sume thatY is a power of two (IfrY is not a power of two, addi-

is to find a good balance between communication and computa-tional unused entries are added. Inimplementation, owglizé en-

tion costs. [J. H. Chen and Maizel 1998][F. Aimeida and Gteza
2002] represent parallel implementations of RNA secondémyc-
ture prediction DP algorithm. In [J. H. Chen and Maizel 198&)
computational load balance is satisfactory but their desip not

tries are added and several branch instructions can awightiised
computation). The DP matrices is partitioned into ten swtrives,
which consist of three triangular matrices and six rectéargma-
trices (See Figure 3)X is the original DP matrices with¥2size,



then it is partitioned into ten submatrices:

X112 X12

X22

X13
X23
X33

X14
X24
X34
X44

The sub-matrices along diagonaf;1,Xo2, X33, X44 are self-
contained, that is, each entries only depends on otheesritrithe
same sub-matrices. In addtio;» only depends oiX;1 and Xy,
X34 only depends oiXzz and X44. If combining X141, X12, Xp2 and
X33, X34, Xa4 into two larger sub-matrices, respectively, we get two
independent DP matrices witffZ size and can be divided recur-
sively. Thus, recursive functio# is defined:

(*$)-+(* )

whereA andB are triangular matrices, ar@elis a rectangular ma-
trices. All entries in three matrices are unknown. ThusteDP
sub-matrices are computed recursively usihg

X =

X X2 \ _g [ X X2
X22 ' X22
X33 Xas —g X33 Xas
X44 X44

After Xy1, X12, X22, X33, X34, X44 are computed, we can solve the re-
mainder four rectangular sub-matrices. Because of thecdgten-
dencies Xo3 should be computed firstly and can only depends on
X2 andXz3. Then, onceXy, and X33 have been computedps can

be computed immediately. We define another recursive fomc:

(" 9)-+(* 9

whereA andB are triangular matrices, ar@lis a rectangular ma-

trices. A andB have been computed afxis an unknown matrices

only depends o andB. ThenXy3 is computed using recursive
X23

_O"

X22 _ g X2 X3

X33 X33

Now, we define two tensor operatiogsand®. Let matricesA =
(&j )sxs:B = (1ij )sxs,.C = (Gij)sxs-
Definition 1. Va; € Abjj € B,cij €C, 1<i,j <s, if g
mirg_,{Gij, &+ by j}, thenC = AQ B.
Definition 2. Vaj € Abjj € B,cij €C, 1<i,j <s, if g
min{a; j,bj ;}, thenC = A®B.

After Xp3 has been computed, bo¥iz andXo4 can be computed.
Assume that we first compubé 3. SinceXi, and X3 are known
rectangular sub-matrices, we can compute the partialtsssigub-
matricesX; 3 using equation (3)

X13= X139 (X12® X23) 3)
then, we complete the computationXf; by recursive functiorg:
(xll ):g(xn X13)

X33

With the same method4, X14 also can be computed:

X13
X33

Xo4 = Xo4® (X23® X34) (4)
Xz Xoa \ _ 5 %2 Xoa
X44 X44

X14 = X14® (X12 ® Xo4) (5)

X14 = X14D (X13® Xa4) (6)
X Xua \ _ g X Xia
X44 X44

Divid the DP matrices recursively into smaller sub-masicentil

the size of sub-matrices is small enough to be containeddheca
totally. For these small sub-matricefp_standard is called to fin-

ish computing in recursive functio#f, where all entries in the sub-
matrices are unknown. For the small sub-matrices in regeifsinc-

tion .#, only one of the three sub-matrices need to be computed. So
dp_return is called in such case (See Figure 4).

Equations (3)(4)(5)(6) are four elementary operationhérecur-
sive implementation and have an uniform forn@k=C ¢ (A® B),
which is implemented adp_base(See Figure 5). It is obvious that
dp_baseis analogous to dense matrix multiplication, thus most of
the optimization in dense matrix multiplication also cardpplied

to dp_base Proceduresip_tri anddp_rect in Figure 6 implement
the recursive algorithm. In the implementation, the retoftone
recursive is relaxed when the size of submatrices can gntiesfit
into the cache totally.

A direct tiled implementation of DP iteration as shown inyoimh-
proves little performance. We now apply a tiling approactihi®
cache oblivious recursive DP algorithm. In order to bettatah
the recursive algorithm, it seems that Morton data layounhdse
effective. The DP matrices is partitioned into two triarsyknd
one rectangles. These submatrices are laid out contiguoughe
memory. Each of these submatrices is further recursiveligeld
and laid out in the same way. At the end of recursion, elemants
the submatrices are stored contiguously. As shown in therexp
ments presented in section 5, the tiling to the new cacheiob§
algorithm improves the performance greatly.

dp_return(matrices m, int n)
for(j=n/2;j <nmj++)
for(i=n/2-1;i>0;i——){

t=mij]

indxj = indx[j];
ij = i+indxj;
t=mjij]

for (k=i;k< j;k++)
t=min2(t, m[i+indx[k]]+m[k+1+indxj])
mlij]=t

}

Figure 4: Pseudocode procedure for the base case of rezatsiv
gorithm.

dp_base(matrices A, matrices B, matrices C, int n)
for (i=0;i <nji++)
for(j=0;j<nj++){
t =Cli[j]
for (k=0;k < nmk++)
t=min2(t, A[i][k]+B[K][i])
Cli[i]

Figure 5: Pseudocode procedure for the basic operatiorecaf-r
sive algorithm.



dp_tri(matrices A, matrices B, matrices C, int n)

{
if(n <b)

dp_standard(C,n);
suhsize=n/2;
dp_tri(A11, A12, A22, subsize);
dp._tri(B11, B12, B22, sutsize);
dp_rect(A, B, C, n)
}

dp_rect(matrices A, matrices B, matrices C, int n)

{
if(n < M)

dp_return(C,n);
suhsize=n/2;
dp_rect(A22,B11,C21,sulsize);
dp_base(A12,C21,C11,sL&ize);
dp_rect(A11,B11,C11,sulsize);
dp_-base(C21,B12,C22,sLdize);
dp_rect(A12,B22,C22,sulsize);
dp_base(A12,C22,C12,sL&ize);
dp_base(C11,B12,C12,sLdize);
dp_rect(A11,B22,C12,sukize);

Figure 6: Pseudocode implementation for two recursive gsroc
dures.|A| = |B|=|C|=n/2
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Figure 7: The tiled triangular domain. In the transformedndm
the dependences are the same those of the original domagrtil@h
along the diagonal is triangle and others are rectangle evividth
and height arex andy respectively. This figure illustrates the case
p =4 and the size of tiled space is 16.

4 Parallelism Optimization for Tiling Algo-
rithm

Parallelization using a tiling approach for the nonserayadic DP
algorithm is a problem of tiling the triangular iterationase with
nonuniform dependence problem. The computation of a gaint
depends 0®(j —i) points, that is, all the points in the domain from
theith row and all the points from thgh column have something
to do with the value of the function in the poifit, j). The de-
pendence vectors are variable withj) (See Figure 7). Along the
diagonal in triangular domain, the computation can be famngd
into multistages and obviously the dependences appearganuon
consecutive stages. The computation in stage k dependsigesst

from 1,2,...,k—1, not only stagé&— 1 for the uniform dependence
problems. We first describe a new tile-processor mappirayighgn
for parallel tiled DP algorithm, then give a new tile schexdstrat-
egy to overlap communication with computation.

4.1 A Tile-processor Mapping Algorithm

Assume that we havp processors and the size of tiled triangular
iteration space is. First we address the problem of tile-processor
mapping for load balance. For other similar matrix probletock-
cyclic distribution has been proven to be an efficient metfiod

!

In previous work [J. H. Chen and Maizel 1998][F. Almeida and
Gonzalez 2002] for parallelizing the tile graph, the simipleck-
cyclic distribution maps tiles to the processors in a collrow wise
modulo p fashion; i.e. rowis allocated ta mod p processor. This
simple block-cyclic mapping of tiles to processors ensthasver-
tical/horizontal successive tiles are mapped to the sameepsor
and no communication is involved. We note that the comparadf
each point is different and the cost of computation is mogeax
sive when the points are closer to the right-up part in thexdien
space. Thus, this causes a substantial workload unbalancega
processors. To address this problem, an alternate bladic @is-
tribution is presented in Figure 7. This alternate blocklicymap-
ping distributes the same number of iteration points to aitps-
sors. That is to say, each processor has the same memoryssempl
ity of O(m?/p), wherem is the size of original iteration domain.

A column/row of tile is called macro column/row. The entiteri
ation space is partitioned inty/ p strips containing p macro rows.
For each strip, only the first tile on each processor is ti¢argand
the others are rectangular. Each strip can be visualizetaps-t
zoid. The strips are alternatively reorganized and coabb#ato a
parallelogram (See Figure 8). The parallel algorithm pedsen a
pipeline way from strip O tm/ p wherep processors compute their
own tiles along diagonal in parallel within one strip. In katrip
the computational cost becomes larger from the bottom nraevo
to the upper one. In our proposed alternate block-cyclicpirayp
processoi which computes the bottom macro row in stkipvill
compute the upper one in stript 1. Processor can immediately
begin to compute the macro row in stip- 1 in that computation
of its dependent points have been finished in the previoigssin
this sense, a pipeline is formed among the strips. Transfgreur
alternate block-cyclic distribution achieves computatioad bal-
ance.
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Figure 8: The coalesced iteration space. The trapezoisssarie
alternately inverse. The dark point (corresponding to i goint
in Figure 7) depends on all the gray points.

4.2 Optimial Tile Parameters

We call the parallel step of computing a tile as a macrostephis
section we give an analytical solution concerning the oglitite
volumev = x x y. Let us consider the parallelogram iteration space



as affine to the original iteration spaa®)(with width w and height
h. With our alternate block-cyclic distribution gmprocessors, we
obtainh/py passes and the size of each of spgex w. Without
loss of generality, we assume the span of each pass is dibided
Since the last period of a pass is thgx macrosteps and requir@s
time steps to finish, we get total parallel time sté&ps

h Wi m+1 +2
PR mmtD+2 @)
py 4pv

Although the arithmetic complexity of calculating eachrgas dif-
ferent, the total arithmetic complexity on each processtité same
using our alternate block-cyclic distribution. Let us derpandw

as the average time and number of tiles used to execute & singl

point in the original iteration domaing, 3 is network commu-
nication startup and transfer latency. The execution tifena
macrostep is given bgy:

Pn=(a+(p—1)Bwv)+w (8)
Combing 7 and 8, we therefore obtain the total execution ime

(M +m+2)a

T:TmXPm: 4pv

+((p—wB+y)pv+ao  (9)

whereg = (m2+m+2><‘{pfl>°”3+y) + pa. Therefore, in order to find

p
the optimal tile size, we need to minimize the running time 9
is a convex function and the volumvgminimizing this function is
given by:

ot (M +m+2)a

2p\ (p—L)wB+y) (10)

4.3 Overlapping Communication with Computation

Because of the dependences between successive phases,
computation of one tile is restricted to a serialized preces

communicationcomputecommunication Total execution tiles
consists of successive phases interleaved with commionicanes.
A processor receives the data needed to execute a tile astipé,

and performs the computations and then sends to other garses

which will be used for tile calculation in time step k+1. Thual
execution time is given by:

T = Tm X Pm = Tm X (Teomm+ Teom p)

where Teomm and Teomp are the communication and computation

time, respectively. Each time step contains a triplet obnrex
compute-send for each tile. Since it exploits all inheremapelism
at the tile level where all processors concurrently eitr@njgute
or communicate with the dependent processors, the pasddjet

rithm can achieve reasonable speedup. However, each pooces

inevitably has to wait for essential data before startirgadbmpu-
tation of a certain tile and wait for the transmission of tesults
to other processors, thus resulting in significant idle gssor time
when sizes of messages are becoming larger.
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Figure 9: Non-overlap (upper) and overlap (bottom) tileestiiie.
The dark point is unused tile representing processor idte arcs
only depict the actual data flow involved with communicatidhis
figure only depicts the tile schedule on one strip. Actualtiypar-
allelogram representing the entire iteration space thdisepoints
are replaced by the points in successive strip with a pipeliay.
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The communication time can be divided into startup tfggrtup=

a and messages transfer tiffigans = (p— 1)Bwv. The burden of
actual data transmission is removed from CPU on modern tégh p
formance network architectures. So it is reasonable tmparfin
algorithmic transformation to schedule the executionleétso that

a processor node can receive, compute and send data at the sam
time. Figure 3 depicts two kinds of tile schedule strateggn-n
overlapping and overlap schedule. In the overlap schedatme
that processopy is computing tile(i, j), thenpx. g is computing

tile (i—d,j—2xd) (i.e. px_1 is computing tile(i + 1, j + 2), pxy1

is computing tile(i — 1, j — 2)) whereat time step. Thus, the tile
data at time step on each processor is delayed to be needed by
other processors at time step- 2. Therefore, processqyi com-
putes its tile at time step and concurrently receives data from other
processors to use themtat 1 time step and sends data produced
att — 1 time step.

Although the idle points to the right of a strip can be eliméath
with a pipeline way, the overlap schedule results in pipestartup
overhead, that is, it increases the number of macrostepgs-b¥,
WhereT,{1 = Tm+ p— 1. However, the cost of each macrostep is

given by:
Pr/n — maX{Tcomm Tcomp} - max{a + (p— 1)B(A)V)7 W}

WhenTeomp= Tecomm it can achieve a theoretical maximum reduc-
tion in time by a factor of 1. In fact, we should note that ondyre
communication can be overlapped by tile computation bextues
communication startup is handled by CPU, and in this sense th
theoretical speedup is less than 2.

the

5 Performance Results and Analysis

5.1 Memory Hierarchy Performance

We experimented on four commonly used modern computing
platforms-Opteron, Xeon, Power4, PowerPC. The configumatf

the platforms is listed in Table 1, which demonstrates théua
parameters of the processor, the underlying memory system a
the compiler flags.Primarily we are interested in executiome or
MFLOPS of the algorithms. Table 2 shows the running time &n si
different platforms with increasing problem sizes. The bemof



Table 1: Machine configuration for the various platform uB#dexperiments. The cache are of the form Capacity/Line(SI4.).

Parameter Opteron Xeon(P4) Power4 PowerPC
clock rate 1.6Ghz 2.4GHz 1.3Ghz 400MHz
L1 data cahce 64KB/32B | 8KB/64B 32KB/128B | 32KB/128B
L2 cache 1MB/64B | 512KB/64B | 1MB/128B | 1MB/128B
data TLB entries | 32 64 1024 128

TLB associativity | direct direct 128 16

VM page size 4KB 4KB 64KB 64KB
Compiler pgcc icc xlc xlc

Option -03 -03 -05 -O5
Operating system | SUSE Redhat AIX AIX

Table 2: Running time of three implementations on six défemplatforms. The notations used in table are explainestasidard implemen-
tation, r: recursive without tiling implementation, r+eaursive with tiling implementation. The time of recurswith tiling implementation

is the best instance for all different tiling sizes.

size | Opteron Xeon(P4) Power4 PowerPC
5 r r+t 5 r r+t 5 r r+t S r r+t

1000 | 2.93 1.92 1.01 | 2.96 1.17 0.69 2.08 1.48 0.87 | 10.42 5.23 1.38
1500 | 12.44 | 5.68 2.73 | 10.48 | 7.50 3.64 9.64 6.04 3.34 | 52.60 28.25 | 4.92
2000 | 3294 | 18.11 | 7.15 | 26.29 | 19.72 | 8.60 28.95 | 18.23 | 8.47 | 142.86 | 86.98 | 12.07
2500 | 68.17 | 40.43 | 25.25| 59.66 | 40.63 | 27.69 | 65.64 | 39.46 | 24.41| 296.93 | 194.45]| 30.64
3000 | 122.17| 77.17 | 32.61| 113.27| 7254 | 40.54 | 127.20| 74.94 | 33.81| 533.11 | 368.11| 43.10
3500 | 199.22| 134.22| 78.47 | 212.58 | 128.44| 92.67 | 219.57| 148.05| 74.04 | 908.97 | 626.97| 86.19
4000 | 304.03 | 211.63| 89.53 | 376.92| 203.90| 106.81| 366.40 | 241.89| 87.84 | 1466.87| 982.94 | 105.85

L1 cache misses, L2 cache misses and TLB misses on Opteron are

used to explain the trends in execution time. L2 cache misses on Opteron

500000 -

Figure 10 shows that L1 data cache misses for the three imple- E [Zzﬁzxiﬂ"ed

mentations on Opteron. The number of cache misses for twe opt 400000 +>—- standard

mized algorithms are much lower than the standard algositfirhe

pure recursive algorithm reduces the number of cache migsgs 400000 7

2 times, and the hybrid recursive and tiled algorithm redute —

number of cache misses by 2-3 times. The plots show an irereas

in the number of L1 data misses as the size of the problems be- 100000

comes larger, which is due to an increase in the capacity @mftiat

misses. In the experiment, the problem size varies with S0 0 £ 2 ‘ ‘ : ‘

number of L1 data cache misses in recursive without tiliegeases
with the increase problem size by 500. However, when thelpnob
size is increased by 500, the number of L1 data cache misses in
cursive with tiling almost doesn’t increase. Only when thelglem
size is increased by 1000, we notice the notable increasacimec
misses. The conflict misses are due to cross interferencegthe
auxiliary array, where the tiling technique removes someflazi
misses.

L1 cache misses on Opteron

45406
recursive-tiled
4e+06 —A—AN-
35e+06 O

3e+06

recursive

standard

2.5e+06 —
2e+06 |
15e+06 —|
1le+06
500000 —|

T 1
2500 3000 3500 4000

problem size

1000 1500 2000

Figure 10: L1 Cache misses comparison on Opteron
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Figure 11: L2 Cache misses comparison on Opteron
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Figure 11 exhibits the L2 cache misses for three implemiemsit
on the Opteron. The recursive algorithm without tiling reelsi the
number of L2 data cache misses by 1-2 times when compared witl
the standard implementation. But the L2 cache misses haee a n
table increase when the problem size is larger than 300Qubeca
of capacity misses. The recursive algorithm with tilinguees the
number of L2 data cache misses by about 5 times comparing the
standard implementation. Although the number of L2 cacleses

is much smaller than that of L1 data cache misses, the misschat

of L2 cache misses is 2-3 times longer than that of L1 cachsesis

L2 cache miss also plays an important on reducing the rurtirimey

h

Another important reason for decreasing in running timeréour-
sive algorithm is explained by TLB misses. Figure 12 shoves th
TLB misses of three implementations on the Opteron (Theee ar
two levels TLB on Opteron, Figure 12 gives the sum of two Isvel
TLB misses). In the recursive implementation, TLB thraghis
avoided by tiling the sub-matrices, so the number of TLB e8ss
is reduced greatly. Comparing the above running time plats w
cache and TLB performance plots, we find that the trend iningnn
time accords with the trend in TLB misses. Although we doream
sure the TLB misses on the PowerPC, the larger 10 times liedact
in running time can be explained by the larger page size 64KB.
The DP formulation only needs to compute a triangular mesic
the data is laid out by column/row index by an additional inde
array. So in the standard and recursive without tiling impata-
tion cause irregular memory accesses. In this case, lasggr gize
results in more TLB thrashing. The blocking recursive innpda-
tation rearranges the data accesses at the cost of sulzesatdpy
operations, however, it improves the TLB performance dyeat
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Figure 13: Comparison of experimental and theoretical mminm.

5.2 Communication Peformance

The performance of the parallel algorithm will be testedtigh
experimentation on a cluster with 16 Opteron processorgimngn

at 2.2GHz, each with 3GB RAM. The processors are connected
to Infiniband network. The parallel programming environiisn
MVAPICH2-0.9.2 which is a high performance MPI on Infiniband
designed by OSU [iba ][J. Liu and Panda 2004]. The used com-
munication operators are MEBet/MPLPut one-sided communica-
tion.

In order to validate the tile parameter formula, we estinta¢eover-
head through a ping-pong test benchmark. Table 3 shows #re av
age results in terms of the latency and bandwidth. The adtiem
time for computing a single instandg, j) of the triangular iter-
ation is anO(j — i) function. Like the approach in [F. Almeida
and Gonzalez 2002], we approximate it by the average running
time of the sequential algorithm over the whole iteratiomacs

ie. y= R(n)/Lg” (which is more reasonable than the equation
in [F. Almeida and Gonzalez 2002]), which denotes the tinte fo

Table 3: Latency and bandwidth for MVAPICH2 on Opteron. The
message size unit is byte.

type message sizeé MVAPICH2 on Opteron
latency 0 3.21us
bandwidth | 1 1.22MB/s

16 19.85MB/s

512 429.02MB/s

1024 638.91MB/s

16384 893.367MB/s

65536 801.540MB/s

computing the entire iteration space. In Figure 13, the expmn-
tal result is compared to our analytical calculations deg\from
9. Although the theoretical analysis includes a detailédadime
delay parameters, there is a gap between the theoreticaxged-
imental time. This gap results from our approximating thening
time and message sizes of computing a single tile. Our ttieate
formula uses an average value instead of a variable valuethsgt
position of a tile. However, we observe that the theorefimahula
is used to find an optimal tile volume in our model. The trend-
line for the theoretical function is close to the experinaénime
measured. The difference between experimental minimunthad
oretical minimum is rather small.

We are interested in the speedup factor, which is a measuhe of
performance of a parallel algorithm. Figure 14(a) and Fadi#(b)
show the parallel execution time and the speedup obtainédeas
number of processors increase for overlapping and norlapmng
parallel tiled algorithm. Itis transparently to all thatslapping ex-
ecutions which take advantage of the higher performanceraem
nication architecture are faster than the non-overlappimes. The
reduction of execution time is more drastic when the contmria
communication ratio is closer to 1.

computation/communicatoin ratio

ratio

10
processors

Figure 15: The ratio of computation to communication

Inevitably, There is a gap between the speedup of the pbaidie-
rithm and linear speedup. Since the processor idle at thgtar
end of pipeline can be negligible, a more reasonable exjdahat
the decrease of the ratio of computation to communicatioig- F
ure 15 plots the computation to communication ratio obtiibg
the parallel algorithm without communication-computatiover-
lapping, from which one can easily draw a significant coriclus
An important observation is that communication startupeisdied

by CPU. When the number of processors becomes larger, the siz
of strips on each processor becomes little, that is, theafizem-
munication messages becomes little. At the same time, tee co
of communication startup increases with the number of Eeme
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Figure 14: Comparison of the total parallel execution time speedup

due to all-pairs communication for each tile. Therefore,speedup
of overlapping over non-overlapping can not obtain the tbecal
maximal speedup 2.

6 Conclusions

In recent years many research groups have systematioadly ste
course of optimization for the algorithms used in bioinfatos.

In order to apply a quantitative approach in computer agchitre
design, optimization and performance evaluation, wordklloanch-
mark suits of representative applications from the biolagy life
sciences community, where the codes are carefully seléxtgmhn

a breadth of algorithms and performance characteristiepes-
posed [D.A. Bader and Singh 2005][K. Albayraktaroglu and Ye
ung 2005][Y. Li and Fortes 2005]. In our previous work, we éav
investigated the runtime performance for several commosid
algorithms on memory hierarchy architectures in order el
optimization techniques for optimizing applications inibiformat-
ics [G. Tan and Sun 2006]. A common features of these work is to
focus on the dynamic programming algorithms.

In this paper, we have demonstrated decreased running fones
nonserial polyadic dynamic programming algorithm by inyro
ing locality using combination of algorithmic ideas andhatec-
tural capabilities. The cache oblivious technique formjting DP
algorithms has reduced the running time sharply in curresfpd
memory hierarchy architectures. An important fact is thathave

to perform algorithmic transformation to use general optation
techniques such as tiling and blocking. On parallel archiies
we addressed and resolved the problem of optimally tiliegtiéra-
tion domain with nonuniform dependences for paralleliziogse-

rial polyadic dynamic programming algorithm. Although then-
efits of such tiling have been well-known in the past decdauleret
was no systematic method to choose tiling parameters witf co
putation and memory load balance. We have proposed an alter-
nate block-cyclic distribution to map the triangular itiiva space

to processors. An optimal tile volume size to minimize th&lto
execution time has also been shown in an analytical and iexper
mental way. As far as we known, another key aspect is that we
have proposed an algorithmic transformation to overlaproam-
cation with computation for such tiling problem in the firghée

(In fact, this method also is applicable to uniform iterat&pace
tiling problem). The technique of our algorithmic transfation a
successful attempt and guidance for developers to optiemzap-
plication code in order to exploit the communication-comapion

overlapping. Confining to the available experimental jlatf to
us, we can not run our test on a larger size of processors. \owe
we can derive that the communi-cation-computation ovepkaal-
lel algorithm will perform better on a large scale parallgdtem in
a fine grained mode, which will be mainstream parallel conmgut
to achieve petaflops [pet ] performance in the future.
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