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Abstract

Dynamic programming has been one of the most efficient ap-
proaches to sequence analysis and structure prediction in biology.
However, their performance is limited due to the drastic increase
in both the number of biological data and variety of the computer
architectures. With regard to such predicament, this papercreates
excellent algorithms aimed at addressing the challenges ofimprov-
ing memory efficiency and network latency tolerance for nonserial
polyadic dynamic programming where the dependences are nonuni-
form. By relaxing the nonuniform dependences, we proposed a
new cache oblivious scheme to enhance its performance on memory
hierarchy architectures. Moreover we develop and extend a tiling
technique to parallelize this nonserial polyadic dynamic program-
ming using an alternate block-cyclic mapping strategy for balanc-
ing the computational and memory load, where an analytical pa-
rameterized model is formulated to determine the tile volume size
that minimizes the total execution time and an algorithmic trans-
formation is used to schedule the tile to overlap communication
with computation to further minimize communication overhead on
parallel architectures. The numerical experiments were carried out
on several high performance computer systems. The new cache-
oblivious dynamic programming algorithm achieve 2-10 speedup
and the parallel tiling algorithm with communication-computation
overlapping shows a desired potential for fine-grained parallel com-
puting on massively parallel computer systems.

Keywords: dynamic programming, cache-oblivious, tiling, local-
ity, parallelism

1 Introduction

Dynamic programming (DP) is a common technique to solve a
wide variety of discrete optimization problems such as schedul-
ing, string editing, packaging and inventory management. More
recently, researchers have extended its applications to the realm
of bioinformatics. For instance, the Smith-Waterman [Smith and
Waterman 1981] algorithm for matching sequences of amino-acids
and necleotides, Zuker’s [Lyngso and Zuker 1999] algorithmfor
predicting RNA secondary structures. In many DP algorithm re-
searches, it is considered as a class of multistage problems. Grama,
et.al. [A. Grama and Kumar 2003] model the dependences in
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DP formulations as a directed graph and classify them into four
classes of DP formulation: serial monadic (single source shortest
path problem, 0/1 knapsack problem), serial polyadic (Floyd all
pairs shortest paths algorithm), nonserial monadic (longest com-
mon subsequence problem, Smith-Waterman algorithm) and non-
serial polyadic (optimal matrix parenthesization problem, binary
search tree and Zuker algorithm). In the previous classification, the
term serial/monadic represents uniform data dependences,which
has been studied extensively and optimized efficiently on current
architectures in the last decade. All DP of this kind are multistage
problems where there are only two sets dependences due to theDP
recurrences: in the stages themselves and among the consecutive
stages only. The term nonserial polyadic represents the another
more complicated family of DP problems whose dependences are
nonuniform, specifically, new dependences appearing amongnon-
consecutive stages are observed are observed besides the depen-
dences mentioned above.

In order to focus on nonuniform dependences analysis, we first give
a general formulation for this nonserial polyadic DP algorithm. De-
rived from DP formulation in RNA secondary structure prediction
algorithm and optimal matrix parenthesization problem, wepresent
an abstract DP formulation 1, wherea(i) is the initial value.

m[i, j ] =











mini≤k< j{m[i, j ],m[i,k]+m[k+1, j ]}
0≤ i < j < n

a(i)
i = j

(1)

In most applications, this formulation as a computational kernel
mainly involves float operations (Such as Zuker algorithm and op-
timal binary trees). However, the standard implementationof the
nonserial polyadic dynamic programming algorithm cannot exploit
a reasonable fraction of the floating point peak performanceof cur-
rent microprocessors. Even worse, the performance always drops
dramatically as size of the problem grows(See Figure 2).

The reason for the disappointing performance is the well-known
memory wall [Wulf and McKee 1995] in deep memory hierachy ar-
chitecture. The DP algorithms are easily implemented as loop nests
iterations, thus, it is also considered as an iteration domain/space
problem [Irigoin and Triolet 1988] for optimizing its locality and
parallelism. Tiling the iteration domain (loop blocking, partition-
ing) [Irigoin and Triolet 1988][Xue 1997b] is a well-known tech-
nique used by compilers and programmers to improve data lo-
cality and to control parallel granularity to increase the computa-
tion to communication ratio [Coleman and McKinley 1995][Wolfe
1987][Ramanujam and Sadayappan 1991][Xue and Huang 1998].
However, most of the work on optimal tiling only considers perfect
loop nests with parallelepiped shaped iteration domain anduniform
dependences [Xue 1997b][Ramanujam and Sadayappan 1991][Xue
1997a][Xue 1997c], and unfortunately it is invalid when it comes
to noserial polyadic DP formulation. This paper presented anovel
solution to optimal tiling to triangular iteration domain and nununi-
form dependeces which focus on the nonserial polyadic DP formu-
lation in Zuker RNA secondary structure prediction algorithm, and



the results show our new approach of significant implementation in
terms of performance.

dp standard(matrices m, int n)
for ( j = 1; j ≤ n; j ++)

for (i = j ; i ≥ 1;i−−) {
indxj = indx[j];
ij = i+indxj;
t = m[i j ];
for (k = i;k < j ;k++)

t=min2(t, m[i+indx[k]]+m[k+1+indxj])
m[i j ] = t

}

Figure 1: The program for dpstandard with vertical traverse
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Figure 2: MFLOPS of a straightforward 3-loops iteration imple-
mentation of nonserial polyadic dynamic programming algorithm

What has been ignored by previous work is communication advan-
tage that current high performance computer architecture can pro-
vide. One of the keys to improve communication performance is
to overlap communication with computation and remove the bur-
den of communication from the main processor. One enabling
technology for this effort is memory mapped network interfaces
[M. A. Blumrich and Sandberg 1994] such as Myrinet [N. J. Boden
and Su 1995], Infinband [inf ] and Quadrics [F. Petrini and Fracht-
enberg 2002], which support Virtual Interface Architecture (VIA)
[D. Dunning and Dodd 1998] and Remote Direct Memory Access
(RDMA). In memory-mapped networks, the data can be transferred
between main memory and the network interface through the use of
DMA. This mechanism relieves the host CPU from the responsibil-
ity for moving data from memory and eliminates the need of un-
necessary copying from user buffers to kernel buffers (ZeroCopy
[F. O. Carroll and Ishikawa 1998]). More aggressively, BlueGene/L
[Adiga and et al 2002] provides additional dual-processor I/O node
which handles communication between a compute node and other
systems, including the host and file servers. Based on the inno-
vative hardware, various programming environments and system
softwares also have been developed. In the recent, MPI 2.0 [mpi
] has support one-sided communication. Some emerging explic-
itly parallel programming paradigms using a global addressspace
model, including UPC [upc ], Titanium [K. A. Yelick and Aiken
1998] and Co-Array Fortran [Numrich and Reid 1998][caf ], ex-
ploit communication-computation overlap through one-sided com-
munication.

The goal of this paper is to develop methods for meeting thesechan-
llenges. And previous researches in this filed show thta an algo-

rithm in a divide-and-conquer fashion often has better cache perfor-
mance than the one in simple iteration because divide-and-conquer
recursively solves subproblems which are small enough to fitin the
cache and in this sense only cache misses that occur in the DP are
the compulsory misses. Thereby, the algorithm has a good temporal
locality which consequently can enhance the performance ofDP to
certain large extent. In this paper, we propose a cache-oblivious
[M. Frigo and Ramachandran 1999] nonserial polyadic dynamic
programming algorithm using divide-and-conquer technique. Also,
a tiling optimization is introduced based on the cache oblivious
algorithmic transformation. In order to exploit communication-
computation overlapping. The new tile scheduling strategyresults
in following scene: a processor computes its tile atk time step
and concurrently receives data from other processors to usethem
at k+ 1 time step and sends data produced atk−1 time step. We
investigate the application of our optimization methods toserveral
modern architectures. All experimental results show that the total
execution time is reduced. Our specific contributions are asfollows:

• We have developed a cache-oblivious algorithm for nonserial
polyadic DP in the first time which runs much faster than
the loop nests iteration implementation on deep memory hi-
erachies.

• We have proposed a new tiled parallel scheme for triangu-
lar iteration domain with nonuniform dependences which can
promise computation and memory workload balance. Be-
sides, We formulated and analytically solved an optimization
problem to determine the tile volume size that minimizes the
total execution time of the tile parallel algorithm.

• We have proposed a new tile scheduling strategy to exploit
the inherent overlapping between communication and com-
putation among tile executions, then surveyed the application
of our schedule to modern communication architecture.

The rest of the paper is organized as follows. In section 2, wesum-
marize the previous work on locality and parallelism optimizaton
for DP algorithm. Section 3 discuss our cache oblivious algorithm
aimed to improve the cache performance of nonserial polyadic DP.
In section 4, we use a tiling approach to develop a parallel DPalgo-
rithm, then introduce the tile scheduling algorithm to overlap com-
munication with computation. In section 5, we report experimental
resutls to validat our claims. Finally, the conclusions arepresentd
in section 6.

2 Related Work

A number of groups have been doing research in the area of mem-
ory hierarchy performance analysis and optimizations in recent
years. One of the most successful cases is the optimization of
dense numerical computation [J. Demmel 2005][Frigo and John-
son 2005][M. Puschel and Rizzolo 2005]. One characteristicthat
all these problems share is very regular memory access whichare
known in advance at compile time. The SUIF [M. W. Hall and
Lam 1996] compiler framework includes a large set of libraries
for performing data dependency analysis and loop transformations
such as tiling. However, we should note that the dependencesin-
volved in SUIF is different from that of nonserial polyadic dynamic
programming and SUIF will not perform transformations without
algorithmic intervention. For dynamic programming algorithms,
Venkataraman et al. [G. Venkataraman and Mukhopadhyaya 2003]
presented a tiled implementation of the Floyd-Warshall algorithm
and derived an upper bound on achievable speedup of 2 for state-of-
the-art architectures. The common feature of these work is cache-
aware, that is, the optimized algorithm contains parameters (set at



either compile-time or runtime) that can be tuned to optimize the
cache complexity for the particular cache size and line. Recently,
cache oblivious algorithms have been proved to be able to obtain the
same bound of cache misses for many applications [Frigo and John-
son 2005]. Similar to the tile implementation of Floyd-Warshall
algorithm in [G. Venkataraman and Mukhopadhyaya 2003], Park
et al. [J. S. Park 2004] developed a cache oblivious algorithm
and achieved more speedup by combining tiling/blocking technique
sensitive to cache parameters. From the forgoing analysis,we noted
that the DP algorithm in Floyd-Warshall problem is serial polyadic,
where the dependences are uniform. However nonserial polyadic
dynamic programming algorithm poses unique challenges to im-
proving cache performance due to their nonuniform dependences.
Thereby, optimizations such as tiling can be applied to nonserial
polyadic DP only after considering the specific details individually.

Figure 3: The blocked DP table. The size isn′ ×
n′,X11,X22,X33,X44 are three triangular matrices,whose size are
n′
4 × n′

4 , whereX12,X13,X14,X23X24,X34 are six rectangular matri-

ces, whose size aren
′

4 × n′
4

R. Andonov et.al. [Andonov and Rajopadhye 1997] first applied
orthogonal tiling approach to sequence alignment DP algorithm
where the tiling problem was considered as a 2D uniform depen-
dence iteration space tiling. Their further optmization [Andonov
and Balev 2003] yielded an improvement of a factor of 2.5 over
orthogonal tiling for a sequence global alignment DP algorithm.
For DP algorithms with nonuniform dependences, the complicated
dependences obviously make the parallelization harder. Itis not
surprising that a lot of work has been done in developing an ef-
ficient parallel algorithm. Unfortunately, most of previous work
deals with this problem in the context of communication costless
models. Bradford [Bradford 1992] described several algorithms
solving optimal matrix chain multiplication parenthesizations using
the CREW PRAM model. Edmonds et al. [P. Edmonds and George
1993] and Galil et al. [Galil and Park 1994] presented several par-
allel algorithms on general shared memory multiprocessor systems.
Another important research is in the systolic framework, Guibas et
al. [L. Guibas and Thomson 1979] focused on designing triangular
systolic arrays. The main difficulty for obtaining an efficient paral-
lel implementation on distributed memory multicomputers system
is to find a good balance between communication and computa-
tion costs. [J. H. Chen and Maizel 1998][F. Almeida and Gonzalez
2002] represent parallel implementations of RNA secondarystruc-
ture prediction DP algorithm. In [J. H. Chen and Maizel 1998]the
computational load balance is satisfactory but their designs do not

optimize the communication cost. The authors proved experimen-
tally that the communications took about 50% of the execution time
for a sequence with length of more than 9212. In [F. Almeida and
Gonzalez 2002] the authors described blocked parallel implementa-
tion on a ring of processors and showed the usefulness of the tiling
technique for this nonuniform dependences DP. They focusedon
reducing the communication costs. However, in [J. H. Chen and
Maizel 1998] their analytical formulas they didn’t take into account
the value of the startup latency and the processors were assumed to
be permanently busy. But for current machines it is an unrealistic
approximation. In [F. Almeida and Gonzalez 2002] the authors ig-
nored that the computation of each iteration point was different, so
their algorithm can not attain computation load balance. They over-
estimated the benefit of achieving the communication only between
two neighbors and consequently kept the entire iteration space in
each processor node. Thereby, this method has unavoidable limita-
tions on the problem size because of the physical available memory.

As for how to utilize the enable technology of communication-
computation overlap on modern network architectures, Danalis et
al. [A. Danalis and Swany 2005] presented program transforma-
tions in parallel programs which use MPIs collective operations.
However, its transformation targeted uniform dependence iteration
domain which is easily implemented as a perfect loop nest.

3 Cache-oblivious Algorithm for Nonserial

Polyadic DP

The most important technique to develop cache-oblivious algo-
rithm is divide-and-conquer. Before presenting the detailed re-
cursive divide-and-conquer algorithm, we transform the equation
1.Assume(i, j) is the original coordinate in the original domain
D = {(i, j)|0 ≤ i ≤ j < n}, wheren = |D | is the original prob-
lem size,(i′, j ′) is the new coordinate in the transformed domain
D ′ = {(i′, j ′)|0≤ i′ ≤ j ′ < n′}, wheren′ = n+1 = |D ′| is the new
problem size. The iteration domain transformation is defined as
follows:

(i′, j ′) = f (i, j) : i′ = i, j ′ = j +1

Thus, in the transformed domain formulation 1 is rewritten as the
new formulation 2, wherea(i) is the known initial value (the values
on the new diagonal also can be any values).

m[i′, j ′] =











mini′+1≤k′< j ′{m[i′, j ′],m[i′,k′]+m[k′, j ′]}
0≤ i′ < j ′ < n′

a(i)
j ′ ≤ i′ +1

(2)

In the new domain, the entries on the new diagonal do not contribute
to the computation. We claim that except for the unused values on
the new diagonal in the new domain, the transformed formulation 2
gains the same dynamic programming matrices as the originalfor-
mulation 1 in the original domain. In fact, the orignal domain D is
a subset of the transformed domainD ′, D ⊂D ′ which is visualized
as adding a new diagonal to the original DP matrices(See the gray
point along the diagonal in Figure 3

Thus, a recursive divide-and-conquer algorithm is considered
within the transformed domainD ′. Without loss of generality, as-
sume thatn′ is a power of two (Ifn′ is not a power of two, addi-
tional unused entries are added. In implementation, only logical en-
tries are added and several branch instructions can avoid the unused
computation). The DP matrices is partitioned into ten sub-matrices,
which consist of three triangular matrices and six rectangular ma-
trices (See Figure 3).X is the original DP matrices with 2k size,



then it is partitioned into ten submatrices:

X =







X11 X12 X13 X14
X22 X23 X24

X33 X34
X44







The sub-matrices along diagonalX11,X22,X33,X44 are self-
contained, that is, each entries only depends on other entries in the
same sub-matrices. In addtion,X12 only depends onX11 andX22,
X34 only depends onX33 andX44. If combiningX11,X12,X22 and
X33,X34,X44 into two larger sub-matrices, respectively, we get two
independent DP matrices with 2k−1 size and can be divided recur-
sively. Thus, recursive functionG is defined:

(

A C
B

)

= G

(

A C
B

)

whereA andB are triangular matrices, andC is a rectangular ma-
trices. All entries in three matrices are unknown. Thus, thetwo DP
sub-matrices are computed recursively usingG

(

X11 X12
X22

)

= G

(

X11 X12
X22

)

(

X33 X34
X44

)

= G

(

X33 X34
X44

)

After X11,X12,X22,X33,X34,X44 are computed, we can solve the re-
mainder four rectangular sub-matrices. Because of the datadepen-
dencies,X23 should be computed firstly and can only depends on
X22 andX33. Then, onceX22 andX33 have been computed,X23 can
be computed immediately. We define another recursive functionF :

(

A C
B

)

= F

(

A C
B

)

whereA andB are triangular matrices, andC is a rectangular ma-
trices.A andB have been computed andC is an unknown matrices
only depends onA andB. ThenX23 is computed using recursive
F :

(

X22 X23
X33

)

= F

(

X22 X23
X33

)

Now, we define two tensor operations⊗ and⊕. Let matricesA =
(ai j )s×s,B = (bi j )s×s,C = (ci j )s×s.

Definition 1. ∀ai j ∈ A,bi j ∈ B,ci j ∈ C, 1 ≤ i, j ≤ s, if ci j =
minn

k=1{ci, j ,ai,k +bk, j}, thenC = A⊗B.

Definition 2. ∀ai j ∈ A,bi j ∈ B,ci j ∈ C, 1 ≤ i, j ≤ s, if ci j =
min{ai, j ,bi, j}, thenC = A⊕B.

After X23 has been computed, bothX13 andX24 can be computed.
Assume that we first computeX13. SinceX12 andX23 are known
rectangular sub-matrices, we can compute the partial results of sub-
matricesX13 using equation (3)

X13 = X13⊕ (X12⊗X23) (3)

then, we complete the computation ofX13 by recursive functionF :
(

X11 X13
X33

)

= F

(

X11 X13
X33

)

With the same method,X24,X14 also can be computed:

X24 = X24⊕ (X23⊗X34) (4)
(

X22 X24
X44

)

= F

(

X22 X24
X44

)

X14 = X14⊕ (X12⊗X24) (5)

X14 = X14⊕ (X13⊗X34) (6)

(

X11 X14
X44

)

= F

(

X11 X14
X44

)

Divid the DP matrices recursively into smaller sub-matrices until
the size of sub-matrices is small enough to be contained in cache
totally. For these small sub-matrices,dp standard is called to fin-
ish computing in recursive functionG , where all entries in the sub-
matrices are unknown. For the small sub-matrices in recursive func-
tion F , only one of the three sub-matrices need to be computed. So
dp return is called in such case (See Figure 4).

Equations (3)(4)(5)(6) are four elementary operations in the recur-
sive implementation and have an uniform formal:C = C⊕ (A⊗B),
which is implemented asdp base(See Figure 5). It is obvious that
dp baseis analogous to dense matrix multiplication, thus most of
the optimization in dense matrix multiplication also can beapplied
to dp base. Proceduresdp tri anddp rect in Figure 6 implement
the recursive algorithm. In the implementation, the returnof one
recursive is relaxed when the size of submatrices can entirely be fit
into the cache totally.

A direct tiled implementation of DP iteration as shown in only im-
proves little performance. We now apply a tiling approach tothe
cache oblivious recursive DP algorithm. In order to better match
the recursive algorithm, it seems that Morton data layout ismore
effective. The DP matrices is partitioned into two triangles and
one rectangles. These submatrices are laid out contiguously in the
memory. Each of these submatrices is further recursively divided
and laid out in the same way. At the end of recursion, elementsof
the submatrices are stored contiguously. As shown in the experi-
ments presented in section 5, the tiling to the new cache oblivious
algorithm improves the performance greatly.

dp return(matrices m, int n)
for ( j = n/2; j < n; j ++)

for (i = n/2−1;i ≥ 0;i−−) {
t = m[i j ]
indxj = indx[j];
ij = i+indxj;
t = m[i j ]
for (k = i;k < j ;k++)

t=min2(t, m[i+indx[k]]+m[k+1+indxj])
m[i j ] = t

}

Figure 4: Pseudocode procedure for the base case of recursive al-
gorithm.

dp base(matrices A, matrices B, matrices C, int n)
for (i = 0;i < n; i ++)

for ( j = 0; j < n; j ++) {
t = C[i][ j ]
for (k = 0;k < n;k++)

t=min2(t, A[i][k]+B[k][j])
C[i][ j ] = t

}

Figure 5: Pseudocode procedure for the basic operations of recur-
sive algorithm.



dp tri(matrices A, matrices B, matrices C, int n)
{
if(n ≤ b)

dp standard(C,n);
sub size=n/2;
dp tri(A11, A12, A22, subsize);
dp tri(B11, B12, B22, subsize);
dp rect(A, B, C, n)
}

dp rect(matrices A, matrices B, matrices C, int n)
{
if(n ≤ M)

dp return(C,n);
sub size=n/2;
dp rect(A22,B11,C21,subsize);
dp base(A12,C21,C11,subsize);
dp rect(A11,B11,C11,subsize);
dp base(C21,B12,C22,subsize);
dp rect(A12,B22,C22,subsize);
dp base(A12,C22,C12,subsize);
dp base(C11,B12,C12,subsize);
dp rect(A11,B22,C12,subsize);
}

Figure 6: Pseudocode implementation for two recursive proce-
dures.|A|= |B| = |C| = n/2

Figure 7: The tiled triangular domain. In the transformed domain
the dependences are the same those of the original domain. The tile
along the diagonal is triangle and others are rectangle whose width
and height arex andy respectively. This figure illustrates the case
p = 4 and the size of tiled space is 16.

4 Parallelism Optimization for Tiling Algo-

rithm

Parallelization using a tiling approach for the nonserial polyadic DP
algorithm is a problem of tiling the triangular iteration space with
nonuniform dependence problem. The computation of a point(i, j)
depends onO( j− i) points, that is, all the points in the domain from
the ith row and all the points from thej th column have something
to do with the value of the function in the point(i, j). The de-
pendence vectors are variable with(i, j) (See Figure 7). Along the
diagonal in triangular domain, the computation can be partitioned
into multistages and obviously the dependences appear among non-
consecutive stages. The computation in stage k depends on stages

from 1,2, ...,k−1, not only stagek−1 for the uniform dependence
problems. We first describe a new tile-processor mapping algorithm
for parallel tiled DP algorithm, then give a new tile schedule strat-
egy to overlap communication with computation.

4.1 A Tile-processor Mapping Algorithm

Assume that we havep processors and the size of tiled triangular
iteration space isn. First we address the problem of tile-processor
mapping for load balance. For other similar matrix problem,block-
cyclic distribution has been proven to be an efficient method[lin
].

In previous work [J. H. Chen and Maizel 1998][F. Almeida and
Gonzalez 2002] for parallelizing the tile graph, the simpleblock-
cyclic distribution maps tiles to the processors in a column/row wise
modulo p fashion; i.e. rowi is allocated toi mod p processor. This
simple block-cyclic mapping of tiles to processors ensuresthat ver-
tical/horizontal successive tiles are mapped to the same processor
and no communication is involved. We note that the computation of
each point is different and the cost of computation is more expen-
sive when the points are closer to the right-up part in the iteration
space. Thus, this causes a substantial workload unbalance among
processors. To address this problem, an alternate block-cyclic dis-
tribution is presented in Figure 7. This alternate block-cyclic map-
ping distributes the same number of iteration points to all proces-
sors. That is to say, each processor has the same memory complex-
ity of O(m2/p), wherem is the size of original iteration domain.

A column/row of tile is called macro column/row. The entire iter-
ation space is partitioned inton/p strips containing p macro rows.
For each strip, only the first tile on each processor is triangular and
the others are rectangular. Each strip can be visualized as trape-
zoid. The strips are alternatively reorganized and coalesced into a
parallelogram (See Figure 8). The parallel algorithm proceeds in a
pipeline way from strip 0 ton/p wherep processors compute their
own tiles along diagonal in parallel within one strip. In each strip
the computational cost becomes larger from the bottom macrorow
to the upper one. In our proposed alternate block-cyclic mapping,
processori which computes the bottom macro row in stripk will
compute the upper one in stripk+1. Processori can immediately
begin to compute the macro row in stripk+ 1 in that computation
of its dependent points have been finished in the previous strips. In
this sense, a pipeline is formed among the strips. Transparently, our
alternate block-cyclic distribution achieves computation load bal-
ance.

Figure 8: The coalesced iteration space. The trapezoid strips are
alternately inverse. The dark point (corresponding to the dark point
in Figure 7) depends on all the gray points.

4.2 Optimial Tile Parameters

We call the parallel step of computing a tile as a macrostep. In this
section we give an analytical solution concerning the optimal tile
volumev = x×y. Let us consider the parallelogram iteration space



as affine to the original iteration space (m) with width w and height
h. With our alternate block-cyclic distribution onp processors, we
obtainh/py passes and the size of each of sizepy×w. Without
loss of generality, we assume the span of each pass is dividedby x.
Since the last period of a pass is thew/x macrosteps and requiresp
time steps to finish, we get total parallel time stepsTm:

Tm =
h
py

w

∑
i=1

i
x

+ p =
m(m+1)+2

4pv
+ p (7)

Although the arithmetic complexity of calculating each point is dif-
ferent, the total arithmetic complexity on each processor is the same
using our alternate block-cyclic distribution. Let us denote γ andω
as the average time and number of tiles used to execute a single
point in the original iteration domain,α, β is network commu-
nication startup and transfer latency. The execution time of one
macrostep is given byPm:

Pm = (α +(p−1)βωv)+ γv (8)

Combing 7 and 8, we therefore obtain the total execution timeT:

T = Tm×Pm =
(m2 +m+2)α

4pv
+((p−1)ωβ + γ)pv+σ (9)

whereσ = (m2+m+2)((p−1)ωβ+γ)
4p + pα. Therefore, in order to find

the optimal tile size, we need to minimize the running timeT in 9
is a convex function and the volumev⋆minimizing this function is
given by:

v⋆ =
1

2p

√

(m2 +m+2)α
((p−1)ωβ + γ)

(10)

4.3 Overlapping Communication with Computation

Because of the dependences between successive phases, the
computation of one tile is restricted to a serialized process:
communication,compute,communication. Total execution tiles
consists of successive phases interleaved with communication ones.
A processor receives the data needed to execute a tile at timestep k,
and performs the computations and then sends to other processors,
which will be used for tile calculation in time step k+1. The total
execution time is given by:

T = Tm×Pm = Tm× (Tcomm+Tcomp)

whereTcomm and Tcomp are the communication and computation
time, respectively. Each time step contains a triplet of receive-
compute-send for each tile. Since it exploits all inherent parallelism
at the tile level where all processors concurrently either compute
or communicate with the dependent processors, the parallelalgo-
rithm can achieve reasonable speedup. However, each processor
inevitably has to wait for essential data before starting the compu-
tation of a certain tile and wait for the transmission of the results
to other processors, thus resulting in significant idle processor time
when sizes of messages are becoming larger.

Figure 9: Non-overlap (upper) and overlap (bottom) tile schedule.
The dark point is unused tile representing processor idle. The arcs
only depict the actual data flow involved with communication. This
figure only depicts the tile schedule on one strip. Actually,in par-
allelogram representing the entire iteration space these idle points
are replaced by the points in successive strip with a pipeline way.

The communication time can be divided into startup timeTstartup=
α and messages transfer timeTtrans = (p−1)βωv. The burden of
actual data transmission is removed from CPU on modern high per-
formance network architectures. So it is reasonable to perform an
algorithmic transformation to schedule the execution of tiles so that
a processor node can receive, compute and send data at the same
time. Figure 3 depicts two kinds of tile schedule strategy: non-
overlapping and overlap schedule. In the overlap schedule,assume
that processorpk is computing tile(i, j), then pk+d is computing
tile (i−d, j −2∗d) (i.e. pk−1 is computing tile(i +1, j +2), pk+1
is computing tile(i −1, j −2)) whereat time stept. Thus, the tile
data at time stept on each processor is delayed to be needed by
other processors at time stept + 2. Therefore, processorpk com-
putes its tile att time step and concurrently receives data from other
processors to use them att + 1 time step and sends data produced
at t −1 time step.

Although the idle points to the right of a strip can be eliminated
with a pipeline way, the overlap schedule results in pipeline startup
overhead, that is, it increases the number of macrosteps byp−1,
whereT ′

m = Tm + p− 1. However, the cost of each macrostep is
given by:

P′
m = max{Tcomm,Tcomp} = max{α +(p−1)βωv),γv}

WhenTcomp= Tcomm, it can achieve a theoretical maximum reduc-
tion in time by a factor of 1. In fact, we should note that only some
communication can be overlapped by tile computation because the
communication startup is handled by CPU, and in this sense the
theoretical speedup is less than 2.

5 Performance Results and Analysis

5.1 Memory Hierarchy Performance

We experimented on four commonly used modern computing
platforms-Opteron, Xeon, Power4, PowerPC. The configuration of
the platforms is listed in Table 1, which demonstrates the various
parameters of the processor, the underlying memory system and
the compiler flags.Primarily we are interested in executiontime or
MFLOPS of the algorithms. Table 2 shows the running time on six
different platforms with increasing problem sizes. The number of



Table 1: Machine configuration for the various platform usedfor experiments. The cache are of the form Capacity/Line size(C/L).
Parameter Opteron Xeon(P4) Power4 PowerPC
clock rate 1.6Ghz 2.4GHz 1.3Ghz 400MHz
L1 data cahce 64KB/32B 8KB/64B 32KB/128B 32KB/128B
L2 cache 1MB/64B 512KB/64B 1MB/128B 1MB/128B
data TLB entries 32 64 1024 128
TLB associativity direct direct 128 16
VM page size 4KB 4KB 64KB 64KB
Compiler pgcc icc xlc xlc
Option -O3 -O3 -O5 -O5
Operating system SuSE Redhat AIX AIX

Table 2: Running time of three implementations on six different platforms. The notations used in table are explained: s:standard implemen-
tation, r: recursive without tiling implementation, r+t: recursive with tiling implementation. The time of recursivewith tiling implementation
is the best instance for all different tiling sizes.

size Opteron Xeon(P4) Power4 PowerPC
s r r+t s r r+t s r r+t s r r+t

1000 2.93 1.92 1.01 2.96 1.17 0.69 2.08 1.48 0.87 10.42 5.23 1.38
1500 12.44 5.68 2.73 10.48 7.50 3.64 9.64 6.04 3.34 52.60 28.25 4.92
2000 32.94 18.11 7.15 26.29 19.72 8.60 28.95 18.23 8.47 142.86 86.98 12.07
2500 68.17 40.43 25.25 59.66 40.63 27.69 65.64 39.46 24.41 296.93 194.45 30.64
3000 122.17 77.17 32.61 113.27 72.54 40.54 127.20 74.94 33.81 533.11 368.11 43.10
3500 199.22 134.22 78.47 212.58 128.44 92.67 219.57 148.05 74.04 908.97 626.97 86.19
4000 304.03 211.63 89.53 376.92 203.90 106.81 366.40 241.89 87.84 1466.87 982.94 105.85

L1 cache misses, L2 cache misses and TLB misses on Opteron are
used to explain the trends in execution time.

Figure 10 shows that L1 data cache misses for the three imple-
mentations on Opteron. The number of cache misses for two opti-
mized algorithms are much lower than the standard algorithms. The
pure recursive algorithm reduces the number of cache missesby 1-
2 times, and the hybrid recursive and tiled algorithm reduces the
number of cache misses by 2-3 times. The plots show an increase
in the number of L1 data misses as the size of the problems be-
comes larger, which is due to an increase in the capacity and conflict
misses. In the experiment, the problem size varies with 500.The
number of L1 data cache misses in recursive without tiling increases
with the increase problem size by 500. However, when the problem
size is increased by 500, the number of L1 data cache misses inre-
cursive with tiling almost doesn’t increase. Only when the problem
size is increased by 1000, we notice the notable increase in cache
misses. The conflict misses are due to cross interference among the
auxiliary array, where the tiling technique removes some conflict
misses.
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Figure 10: L1 Cache misses comparison on Opteron
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Figure 11 exhibits the L2 cache misses for three implementations
on the Opteron. The recursive algorithm without tiling reduces the
number of L2 data cache misses by 1-2 times when compared with
the standard implementation. But the L2 cache misses have a no-
table increase when the problem size is larger than 3000 because
of capacity misses. The recursive algorithm with tiling reduces the
number of L2 data cache misses by about 5 times comparing the
standard implementation. Although the number of L2 cache misses
is much smaller than that of L1 data cache misses, the miss latency
of L2 cache misses is 2-3 times longer than that of L1 cache misses.
L2 cache miss also plays an important on reducing the runningtime.

Another important reason for decreasing in running time forrecur-
sive algorithm is explained by TLB misses. Figure 12 shows the
TLB misses of three implementations on the Opteron (There are
two levels TLB on Opteron, Figure 12 gives the sum of two levels
TLB misses). In the recursive implementation, TLB thrashing is
avoided by tiling the sub-matrices, so the number of TLB misses
is reduced greatly. Comparing the above running time plots with
cache and TLB performance plots, we find that the trend in running
time accords with the trend in TLB misses. Although we don’t mea-
sure the TLB misses on the PowerPC, the larger 10 times reductions
in running time can be explained by the larger page size 64KB.
The DP formulation only needs to compute a triangular matrices,
the data is laid out by column/row index by an additional index
array. So in the standard and recursive without tiling implementa-
tion cause irregular memory accesses. In this case, larger page size
results in more TLB thrashing. The blocking recursive implemen-
tation rearranges the data accesses at the cost of sub-matrices copy
operations, however, it improves the TLB performance greatly.

Figure 13: Comparison of experimental and theoretical minimum.

5.2 Communication Peformance

The performance of the parallel algorithm will be tested through
experimentation on a cluster with 16 Opteron processors running
at 2.2GHz, each with 3GB RAM. The processors are connected
to Infiniband network. The parallel programming environment is
MVAPICH2-0.9.2 which is a high performance MPI on Infiniband
designed by OSU [iba ][J. Liu and Panda 2004]. The used com-
munication operators are MPIGet/MPI Put one-sided communica-
tion.

In order to validate the tile parameter formula, we estimatethe over-
head through a ping-pong test benchmark. Table 3 shows the aver-
age results in terms of the latency and bandwidth. The arithmetic
time for computing a single instance(i, j) of the triangular iter-
ation is anO( j − i) function. Like the approach in [F. Almeida
and Gonzalez 2002], we approximate it by the average running
time of the sequential algorithm over the whole iteration space,
i.e. γ = R(n)/n3−n

6 (which is more reasonable than the equation
in [F. Almeida and Gonzalez 2002]), which denotes the time for

Table 3: Latency and bandwidth for MVAPICH2 on Opteron. The
message size unit is byte.

type message size MVAPICH2 on Opteron
latency 0 3.21us
bandwidth 1 1.22MB/s

16 19.85MB/s
512 429.02MB/s
1024 638.91MB/s
16384 893.367MB/s
65536 801.540MB/s

computing the entire iteration space. In Figure 13, the experimen-
tal result is compared to our analytical calculations deriving from
9. Although the theoretical analysis includes a detailed actual time
delay parameters, there is a gap between the theoretical andexper-
imental time. This gap results from our approximating the running
time and message sizes of computing a single tile. Our theoretical
formula uses an average value instead of a variable value with the
position of a tile. However, we observe that the theoreticalformula
is used to find an optimal tile volume in our model. The trend-
line for the theoretical function is close to the experimental time
measured. The difference between experimental minimum andthe-
oretical minimum is rather small.

We are interested in the speedup factor, which is a measure ofthe
performance of a parallel algorithm. Figure 14(a) and Figure 14(b)
show the parallel execution time and the speedup obtained asthe
number of processors increase for overlapping and non-overlapping
parallel tiled algorithm. It is transparently to all that overlapping ex-
ecutions which take advantage of the higher performance commu-
nication architecture are faster than the non-overlappingones. The
reduction of execution time is more drastic when the computation-
communication ratio is closer to 1.
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Figure 15: The ratio of computation to communication

Inevitably, There is a gap between the speedup of the parallel algo-
rithm and linear speedup. Since the processor idle at the startup or
end of pipeline can be negligible, a more reasonable explainis that
the decrease of the ratio of computation to communication. Fig-
ure 15 plots the computation to communication ratio obtained by
the parallel algorithm without communication-computation over-
lapping, from which one can easily draw a significant conclusion.
An important observation is that communication startup is handled
by CPU. When the number of processors becomes larger, the size
of strips on each processor becomes little, that is, the sizeof com-
munication messages becomes little. At the same time, the cost
of communication startup increases with the number of processors
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Figure 14: Comparison of the total parallel execution time and speedup

due to all-pairs communication for each tile. Therefore, the speedup
of overlapping over non-overlapping can not obtain the theoretical
maximal speedup 2.

6 Conclusions

In recent years many research groups have systematically study the
course of optimization for the algorithms used in bioinformatics.
In order to apply a quantitative approach in computer architecture
design, optimization and performance evaluation, workload bench-
mark suits of representative applications from the biologyand life
sciences community, where the codes are carefully selectedto span
a breadth of algorithms and performance characteristics are pro-
posed [D.A. Bader and Singh 2005][K. Albayraktaroglu and Ye-
ung 2005][Y. Li and Fortes 2005]. In our previous work, we have
investigated the runtime performance for several commonlyused
algorithms on memory hierarchy architectures in order to develop
optimization techniques for optimizing applications in bioinformat-
ics [G. Tan and Sun 2006]. A common features of these work is to
focus on the dynamic programming algorithms.

In this paper, we have demonstrated decreased running timesfor
nonserial polyadic dynamic programming algorithm by improv-
ing locality using combination of algorithmic ideas and architec-
tural capabilities. The cache oblivious technique for optimizing DP
algorithms has reduced the running time sharply in current deep
memory hierarchy architectures. An important fact is that we have
to perform algorithmic transformation to use general optimization
techniques such as tiling and blocking. On parallel architectures
we addressed and resolved the problem of optimally tiling the itera-
tion domain with nonuniform dependences for parallelizingnonse-
rial polyadic dynamic programming algorithm. Although theben-
efits of such tiling have been well-known in the past decade, there
was no systematic method to choose tiling parameters with com-
putation and memory load balance. We have proposed an alter-
nate block-cyclic distribution to map the triangular iteration space
to processors. An optimal tile volume size to minimize the total
execution time has also been shown in an analytical and experi-
mental way. As far as we known, another key aspect is that we
have proposed an algorithmic transformation to overlap communi-
cation with computation for such tiling problem in the first time
(In fact, this method also is applicable to uniform iteration space
tiling problem). The technique of our algorithmic transformation a
successful attempt and guidance for developers to optimizean ap-
plication code in order to exploit the communication-computation

overlapping. Confining to the available experimental platform to
us, we can not run our test on a larger size of processors. However,
we can derive that the communi-cation-computation overlapparal-
lel algorithm will perform better on a large scale parallel system in
a fine grained mode, which will be mainstream parallel computing
to achieve petaflops [pet ] performance in the future.
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